Motivation

- So many features to recommend!
- Not all such messages are useful for every individual!
- Unaffordable or detrimental to run active experiments on all of them!

✓ **Split-Treatment!**

Use logged behavioral data to identify who are likely to benefit from a novel intervention.

Identification of Split-Treatment

- **Prospective data**
- **Observational data**

- Target treatment
- A: Proxy treatment
- Y: Outcome
- U: Natural variation

- Assumption 1 (Ignorability): $P(Y|do(a), x) = P(Y|a, x)$
- Assumption 2 (Compliance): $E_x[E_a[1_{Z(a = 1)}]] > 0$

$ITE_{Y|X}(a) = E_x[E_{do(Y|X)}(1|x) - E_x[E_{do(Y|X)}(0|x)]$

$CATE_Y = E_x[E_{do(Y|X)}(1|x) - E_x[E_{do(Y|X)}(0|x)] = 0$

We pick a *proxy treatment* A such that:
- A exists, with some natural variation, in our observational logs.
- The effect of Z on Y should be mediated through A.

Estimation using Split-Treatment

1. Data processing and setup
2. Estimate ITE models
3. Refutation/sensitivity analysis

- Placebo test
 - Place a random variable as the treatment A
 - Test if estimator returns zero causal effect

- Unobserved confounding test
 - Add a new confounder to the feature set with varying degrees of its effect on A and Y
 - Test if an estimator is less sensitive to the varying degrees of effect of the new confounder

Experiments and Results

Simulation

- RMSE of outcome prediction from the baseline models.
- Validation on experimental data

Real-world data

- Sensitivity analysis (unobserved confounding)

Conclusion

- We presented a practical, observational analysis pipeline for
 - Identifying individuals likely to benefit from a novel treatment Z
 - Using proper causal analysis of existing logs that contain
 proxy treatment A
- A key contribution:
 - Refutation tests and sensitivity analyses enable a principled a priori identification of the feature selection and elimination of unreliable algorithmic design
- We validated our analysis with an A/B experiment in a large real-world setting.