
Université de Montréal

Provably Learning Disentangled & Compositional Models

par

Divyat Mahajan

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Proposition de sujet de thése en vue de l’obtention du grade de
Philosophiæ Doctor (Ph.D.)

en Informatique

August 2024

© Divyat Mahajan, 2024

Université de Montréal
Faculté des arts et des sciences

Cette proposition de sujet de thése

Provably Learning Disentangled & Compositional Models

présentée par

Divyat Mahajan

a été évaluée par un jury composé des personnes suivantes :

Simon Lacoste-Julien
(président-rapporteur)

Ioannis Mitliagkas
(directeur de recherche)

Yoshua Bengio
(membre du jury)

2

Abstract

Despite significant advances in representation learning, success in out-of-distribution (OOD)
generalization and reasoning remains elusive. There is growing interest in incorporating causal
principles into representation learning as a principled approach to tackle these challenges.
Causal factorization helps with efficient OOD generalization as it enables us to model
distribution shifts as sparse mechanism shifts, hence we can adapt faster to them. However,
a major challenge is that the causal factors responsible for the data generation process are
not directly observable. Therefore, it is essential to learn representations that disentangle
these latent (causal) factors of variation from high-dimensional observations. This thesis
proposal aims to explore the various frameworks that identify latent factors with theoretical
guarantees and develop practical approaches that leverage them for constructing reliable
machine learning models.

First, we build on existing work that utilizes auxiliary information for disentangled repre-
sentation learning, focusing on a multi-task supervised learning framework. We demonstrate
that it is possible to identify latent variables even when labels do not render the latent
variables conditionally independent, challenging this common assumption from previous
research. We then shift our focus to unsupervised disentanglement, introducing a class of
decoders inspired by object-centric learning methods, which we term as additive decoders.
Our findings show that additive decoders can disentangle latent variables under minimal
assumptions on their distribution, without the need for any weak supervision. Unlike prior
works, we establish a formal connection between disentangled factors and their compositional
ability when using additive decoders.

Finally, we propose future directions that extend additive decoders to more flexible
additive energy models. Preliminary results suggest that additive energy models can achieve
compositional generalization with discrete factors, offering potential benefits for the task of
group-robust prediction.

Keywords: Disentangled Representation Learning, Compositional Generalization, Distribu-
tion Shifts, Latent Identification, Structural Causal Models

3

Contents

Abstract 3

Introduction 7

1 Background 10
1.1 Cause-Effect Models . 10

1.1.1 Fundamental Concepts . 10
1.1.2 Causal Discovery . 12
1.1.3 Causal Inference with Observational Data 14

1.2 Disentangled Representation Learning . 15
1.2.1 Problem Setup . 15
1.2.2 Independent Component Analysis (ICA) 17
1.2.3 Non-Linear ICA with Auxiliary Information 18
1.2.4 Metrics for Disentanglement . 22

2 Towards efficient representation identification in supervised learning 24
2.1 Introduction . 24
2.2 Problem Setup . 26
2.3 Identifiability Analysis of IC-ERM . 27
2.4 Methodology: Proposed Implementation for IC-ERM 29
2.5 Empirical Findings . 30

2.5.1 Experiment Setup . 31
2.5.2 Results . 32

2.6 Conclusion . 34

3 Additive Decoders for Latent Variables Identification and Cartesian-Product
Extrapolation 35
3.1 Introduction . 35
3.2 Background & Literature review . 37

4

Contents

3.3 Problem Setup . 39
3.4 Identifiability Analysis of Additive Decoders 40

3.4.1 Latent Identification . 40
3.4.2 Cartesian-product extrapolation . 44

3.5 Experiments . 45
3.5.1 Results . 46

3.6 Conclusion . 48

4 Future Work: Compositional Generalization with Additive Energy Models 49
4.1 Introduction . 49
4.2 Characterizing Extrapolation for Discrete Factors 51

4.2.1 Path Connected Support for Discrete Factors 52
4.2.2 Affine Hull Extrapolation . 53

4.3 Extrapolation via Additive Energy Models 55
4.3.1 Extrapolation for Classification Problems 56

4.4 Experiments . 57
4.4.1 Implementation of Proposed Approach 58
4.4.2 Setup . 58
4.4.3 Preliminary Results . 59

4.5 Future Directions . 60

List of Contributions 62

Timeline 63

A Supplementary Material: Mathematical Preliminaries 75
A.1 Measure Theory . 75

B Supplementary Material: Background 79
B.1 Backdoor estimator for ATE . 79
B.2 Local vs Global Disentanglement . 80
B.3 Indeterminacy in latent identification with reconstruction objective 80
B.4 Proof of Proposition 1.2.4 (Linear ICA) . 81
B.5 Non-Linear ICA Using Auxiliary Variables and Contrastive Learning 82
B.6 Weakly-supervised disentanglement without compromises 83

5

Contents

C Supplementary Material: Towards efficient representation identification in
supervised learning 88
C.1 Proof for Linear Identification with ERM. 88
C.2 Proof of Theorem 2.3.3: IC-ERM (case k=d) 89
C.3 Proof of Theorem 2.4.1: ERM-ICA (Case k=d) 90
C.4 Identification with fewer tasks than the latent dimension 92
C.5 Proof of Theorem C.4.5: IC-ERM for the case k=1 95
C.6 Experiments: Implementation Details . 102

D Supplementary Material: Additive Decoders for Latent Variables Identifi-
cation and Cartesian-Product Extrapolation 103
D.1 Identifiability and Extrapolation Analysis . 104

D.1.1 Useful definitions and lemmas . 104
D.1.2 Proof of Theorem 3.4.4: Local Disentanglement 106
D.1.3 Sufficient nonlinearity v.s. sufficient variability in nonlinear ICA with

auxiliary variables . 110
D.1.4 Proof of Theorem 3.4.6: Global Disentanglement 112
D.1.5 Injectivity of object-specific decoders v.s. injectivity of their sum . . 117
D.1.6 Proof of Corollary 3.4.8: Cartesian-Product Extrapolation 118

D.2 Experiments . 119
D.2.1 Training Details . 119
D.2.2 Datasets Details . 121
D.2.3 Evaluation Metrics . 122
D.2.4 Boxplots for main experiments (Table 3.1) 123
D.2.5 Additional Results: BlockLatents Dataset 124
D.2.6 Disconnected Support Experiments 125
D.2.7 Additional Results: ScalarLatents Dataset 125

E Supplementary Material: Compositional Generalization with Additive
Energy Models 130
E.1 Evaluating additive functions on affine-hull 130
E.2 Proof for Theorem 4.2.7 . 131
E.3 Proof for Theorem 4.3.2: Generative Case 136
E.4 Proof for Theorem 4.3.5: Discriminative Case 138
E.5 Experiments . 143

E.5.1 Dataset Details . 143
E.5.2 Additional Results . 144

6

Introduction

Representation learning [Bengio et al., 2013] aims to extract low dimensional representations
from high dimensional complex datasets. The underlying goal is that if these representations
effectively capture the factors of variation that describe the high-dimensional data (e.g., fea-
tures characterizing the shape of an object in an image), they can be utilized to achieve strong
performance on new downstream tasks with minimal supervision. The success of large-scale
pre-trained models highlights the effectiveness of representation learning approaches [Brown
et al., 2020, Wei et al., 2021, Radford et al., 2021]. However, its important to approach these
results with caution, as neural networks have been shown to fail often at out-of-distribution
generalization [Geirhos et al., 2020, Ibrahim et al., 2022, Hsieh et al., 2024].

To address the out-of-distribution generalization failures, recent works [Schölkopf, 2019,
Schölkopf et al., 2021] have advocated for incorporating causal principles into standard
training paradigms; supervised [Arjovsky et al., 2019], self-supervised [Von Kügelgen et al.,
2021], and unsupervised [Kocaoglu et al., 2018, Pawlowski et al., 2020]. The core issue is
that the current deep learning paradigm does not inherently incorporate and leverage key
causality principles [Pearl, 2009], such as the invariance principle, the principle of independent
causal mechanisms, and causal factorization. This is because the traditional causal inference
requires access to structured random variables whose distributions can be decomposed using
causal factorization, which is impossible with complex datasets such as images or text.

Therefore, to harness the power of deep learning and causal principles, it is essential
to first disentangle the factors of variation from low-level observations to obtain the causal
representations that generated the data. Hence, my Ph.D. research is centered on determining
the appropriate assumptions required to disentangle latent (causal) variables from data with
theoretical guarantees, and on developing practical approaches that utilize these disentangled
variables to construct reliable machine learning models with reasoning capabilities.

This thesis proposal first provide reader a background on causality and disentangled represen-
tation learning Chapter 1, where we consider the overall research problems and discuss recent
trends in this area. Section 1.2 describes a general strategy for latent variable identification

7

Introduction

with Auto-Encoders by constraining the mixing function and the latent distribution; with
linear ICA as an example where latent variables can be "disentangled". Further, given the
challenges with unsupervised learning of disentangled representation [Hyvärinen and Pajunen,
1999, Locatello et al., 2019], we discuss in detail the use of (weakly) supervised setups for
disentanglement in Section 1.2.3.

In Chapter 2 we build further on the task of disentangled representation learning with
auxiliary information, focusing on labeled data as the source of supervision. Prior works for
this problem [Hyvarinen et al., 2019, Khemakhem et al., 2020a] operate with the assumption
that the latent factors are conditionally independent given the auxiliary information (labels),
and they also require a lot of auxiliary information. Hence, we provide identification results for
a class of models where auxiliary information does not ensure conditional independence, and
also show experimentally that disentanglement (to a large extent) is possible even when the
auxiliary information dimension is much less than the dimension of the true latent variables.

Chapter 3 returns back to the question of unsupervised disentangled representation
learning, with inspiration from decoders used in object-centric learning [Locatello et al.,
2020c, Dittadi et al., 2021]. We provide latent identification guarantees for a class of decoder
that we call additive, which decompose an image into a sum of object-specific images. Our
identification result does not make any parametric assumption of distribution of latent factors,
only minimal assumptions on their support. Unlike prior works on disentangled representation
learning, we also prove the compositional abilities of the disentangled factors, termed as
Cartesian-product extrapolation. Specifically, we show that the decoder can generate novel
images outside the support of training data via novel combinations of the disentangled factors.

A key assumption made for Cartesian-product extrapolation is that the latent factors are
continuous variables, while many practical scenarios might require us to be compositional in
terms of discrete factors. Further, the extrapolation relies on additive decoders, which are
limited in their ability to model complex scenes with occlusions between objects. In Chapter 4,
we discuss ongoing and future efforts for compositional generalization (extrapolation) with
more expressive additive energy models and discrete factors. We characterize the conditions
on the support of training distribution of discrete factors for compositional generalization, and
provide both theoretical and empirical evidence that additive energy models can extrapolate
to novel compositions. Our current results assume that the latent factors are known as the
focus is solely on compositional generalization; and the future goal is to extend this for both
disentanglement & compositionality with additive energy models.

8

Introduction

Notations. We denote random variables using uppercase letters (X) while their corre-
sponding realizations are denoted with lowercase letters (x). We denote the distribution of
the X as PX or p(X), and the support of X using the set notation (X).

Another important convention is that we use Ck-function to denote a function that is differ-
entiable k times with continuous derivatives. Similarly, Ck-diffeomorphism is used to denote
a Ck-function where the inverse of the function is also Ck. Also, [m] is used to denote the set
of positive integers {1, · · · ,m}.

Finally, Since some notations for the task of disentangled representation learning will be
repeated across several chapters in this report, we summarize them in this table below.

X ∈ Rdx Observations
Z ∈ Rdz Latent Variables
X ⊆ Rdx Support of X
Z ⊆ Rdz Support of Z

g : Rdz → Rdx Ground-truth Decoder
f : Rdx → Rdz Ground-truth Encoder
ĝ : Rdz → Rdx Learned Decoder
f̂ : Rdx → Rdz Learned Encoder

Table 1: Recurrent Notation for Disentangled Representation Learning

9

Chapter 1

Background

1.1 Cause-Effect Models

Several decision-making tasks require us to compute the effect of performing interventions;
"how does changing one component of a system affect the other components?". An approach
to infer interventional effects is to conduct controlled experiments where we only change the
variable of interest, which might not be feasible in several practical scenarios. Hence, learning
the causal generative process from observations is a fundamental problem in several scientific
domains [Sachs et al., 2005, Foster et al., 2011, Xie et al., 2012], as it offers a comprehensive
understanding of the data generation process (DGP), and allows to simulate the effect of
controlled experiments/interventions. These desirable properties can even accelerate scientific
discoveries by reliably predicting the effects of unseen interventions, eliminating the need for
laboratory experiments [Ke et al., 2023, Zhang et al., 2024]. Further, understanding the causal
mechanisms behind the data generation process helps in robust representation learning as it
provides a principled solution to tackle out-of-distribution (OOD) generalization [Schölkopf
et al., 2021], and allow for faster adaptation to distribution shifts [Bengio et al., 2019].

1.1.1 Fundamental Concepts

A popular approach for modeling causal processes is the structural causal model (SCM)
framework [Peters et al., 2017] where causal mechanisms are modeled via structured functional
relationships. Given a set of random variables V = {X1, · · · , Xd}, an SCM define each causal
variable Xi as a function of a subset of the other causal variables (V/{Xi})

Definition 1.1.1 (Structural Causal Model (SCM)). Given a set of endogenous (causal)
variables V = {X1, · · · , Xd} and exogenous (noise) variables U = {N1, · · · , Nd} sampled

10

Background

from distribution p(U), SCM defines the causal relationship for each Xi as follows:

Xi = fi(PAi, Ni) s.t. PAi ⊂ V , Xi ̸∈ PAi

The distribution over exogenous variables p(U) and the causal mechanisms/relationships
{fi} define a unique distribution over the endogenous variables p(V). When we have mutually
independent noise variables (U), then SCM is called a markovian SCM. For the rest of the
report, we would deal with markovian SCMs as the non-markovian counterparts complicate
even basic operations like interventions by violating the independent causal mechanism
principle, which will be explained later.

Further, every SCM implies a directed graph (V,E), also known as causal graph, where the
nodes are the set of causal variables V and there is a directed edge (j → i ∈ E) whenever Xj

causes Xi, i.e, Xj ∈ PAi. The causal graph may contain cycles, which happens when SCMs
model the equilibrium state of a dynamical system. However, for most problems we assume
the causal graph to be directed acyclic graph (DAG), which allows us to connect SCMs with
bayesian networks. Lets denote the bayesian network associated with the causal graph as
a causal bayesian network, then the joint distribution over the causal variables (p(V))
given by the SCM factorizes as follows:

p(X1, · · · , Xd) =
d∏

i=1

p(Xi|PAi) where p(Xi|PAi) is specified by fi(PAi, Ni) (1.1)

Note that a bayesian network implies a family of distributions that factorize in a particular
way; hence the above equation states that the distribution (pV) given by the SCM belongs to
the family of distributions associated with the causal bayesian network. Alternatively, an
SCM implies a unique causal graph, however, a causal graph implies multiple SCMs since it
allows a family of distributions.

Independent Causal Mechanisms (ICM). This principle states that each causal
mechanism (fi(PAi, Ni)) is independent of the other causal mechanisms, i.e., knowledge about
one mechanism does not provide any information about the other causal mechanisms. This
is fundamental assumption for causal models which enables us to perform interventions as
described ahead. Note that ICM also implies that the causal graph satisfies the local markov
property in bayesian networks, i.e., each causal variable is independent of its non-descendants
given its parents, Xi ⊥ XNDi/PAi

| PAi. Note that for non-markovian SCMs this assumption
would not be satisfied, since the noise variables across causal variables are correlated.

11

Background

Interventions in SCM. Interventions alter the underlying causal relationships of a
variable and SCMs allow us to formally characterize them and infer their effect. We say that
a variable Xi has been intervened if the corresponding causal mechanism has been changed,
i.e, Xi = f̃i(˜PAi, Ñi), represented as do(Xi = f̃i(˜PAi, Ñi)). Note that intervening on Xi will
not change the other causal mechanisms due to the ICM principle, hence interventions are
modular. Interventions that lead to PAi = {ϕ} are called perfect interventions, and they
correspond to removing all the incoming edges to Xi in the causal graph. A special case of
perfect interventions are hard interventions, where we set the intervened variable to a specific
value (do(Xi = a)). The effect of an intervention do(Xi) on another variable Xj is defined as
E[Xj|do(Xi)] =

∫
Xj p(Xj|do(Xi)) dXj, i.e., the expected value of Xj in intervened SCM. If

Xi is a binary variable, then the average treatment (causal) effect of Xi on Xj is defined as
the difference in the interventional effects for do(Xi) = 0 and do(Xi) = 1.

Average Treatment Effect (ATE): E[Xj|do(Xi = 1)]− E[Xj|do(Xi = 0)] (1.2)

Adapting to distribution shifts. An interesting implication of the ICM principle
is that if we model distribution shifts as interventions on a causal variable, then we only
need to update the parameters corresponding to the functional mechanism of the intervened
node. Hence, if we trained a model with the correct factorization (1.1) on the observational
distribution, then we only need to change the mechanism of the intervened node to adapt the
model to the interventional distribution. However, if we had an incorrect factorization during
training on the observational distribution, then the effect of intervention is not modular and
we need to change several mechanisms to adapt the model on the interventional distribution.
The following result by [Bengio et al., 2019] provides theoretical evidence for this claim.

Proposition 1.1.2. Consider p, p̃ as two distributions sampled from an SCM with causal graph
G, and they share causal mechanisms for variables, p(Xi|PAi) = p̃(Xi|PAi) ∀i ∈ C. Let θi

denote the parameters for the factor p(Xi|PAi), then we have Ex∼p̃(x)

[∂logp(x)
∂θi

]
= 0 ∀i ∈ C.

In many practical scenarios we do not observe the correct causal factorization and only have
measure the causal variables themselves. Therefore, inferring the correct causal factorization
from data is an important problem, which we discuss in detail in the next subsection.

1.1.2 Causal Discovery

Consider an SCM with causal graph G that entails a distribution p(x) over the causal
variables. Then the problem of recovering the SCM from a dataset containing causal variables
{x1, · · · , xd} ∼ p(x) is called causal discovery. A common characterization of the SCM

12

Background

is to consider the conditional independence (CI) constraints (d-separation) [Pearl, 2009]
entailed by its causal graph G, and solve causal discovery by inferring which SCMs entail the
same CI constraints as those in the data distribution p(x). However, such constraint-based
methods [Spirtes et al., 2000, Sun et al., 2007, Zhang et al., 2012] rely on the assumption of
faithfulness and in principle recover an equivalence class over graphs (Markov equivalence
class) that satisfy the same CI constraints [Peters et al., 2017].

To understand this better, lets first assume that as result of some learning algorithm we
accurately learnt the joint distribution p(x) and now we look at the different conditional
independence (CI) constraints satisfied by p(x). It can be shown for some distributions given
by the true SCM there exist CI constraints in p(x) that are not satisfied by the true causal
graph (G). In such cases causal discovery is hopeless as we would rule the correct solution G
based on all the CI constraints satisfied by p(x). Hence, we make the assumption that we only
work with distributions where every CI constraint satisfied by p(x) is also satisfied by the
true graph (G), also known as the faithfulness assumption. Further, there is no guarantee
that there will be a unique graph that can satisfies all the CI constraints entailed by p(x).
E.g., consider two causal graphs A → B and B → A, then the CI constraints satisfied by
these graphs is exactly the same.

Hence, the inverse problem is not identifiable since there is an equivalence causal graphs
(G) that satisfy the same set of CI constraints, known as the markov equivalence class
The learning problem can be made identifiable under parametric assumptions on the causal
mechanisms (fi(PAi, Ni)) [Peters et al., 2014, Peters and Bühlmann, 2014] or with access
to interventional data [Hauser and Bühlmann, 2012, Bengio et al., 2019]. Another class of
methods are score-based causal discovery methods [Tsamardinos et al., 2006, Hoyer et al.,
2008, Huang et al., 2018], that search over the discrete space of DAGs and return the DAG
with the best score, usually computed via variants of maximum likelihood estimation p(D|G).
This combinatorial optimization problem is NP-hard [Chickering et al., 2004] due to the super-
exponential search space of DAGs. Hence, there have been several methods based on greedy
search [Chickering, 2002] and efficient exploration [Deleu et al., 2022, 2024] of the search
space for score-based causal discovery. Recent works have also transformed this combinatorial
optimization problem into a differentiable continuous optimization problem [Zheng et al.,
2018, Lachapelle et al., 2019, Brouillard et al., 2020, Lippe et al., 2021], which allows for
more scalable causal discovery algorithms.

13

Background

1.1.3 Causal Inference with Observational Data

While we could infer the causal effects with the learned SCM (causal discovery) via do-
calculus [Pearl, 2009], for certain scenarios we do not need to learn the complete SCM.
Consider two random variables; W as the treatment variable that undergoes a perfect
intervention, and Y as the outcome of interest. If we can measure all the pre-treatment
variables (confounders) X that cause both W and Y , then we can estimate the interventional
distribution p(Y |do(W)) using only observed data.

p(Y |do(W)) = EX [p(Y |X,W)] =

∫
p(Y |X,W)p(X)dx (1.3)

This is also known as the backdoor estimator [Pearl, 2009], where the confounders X satisfy
the backdoor criterion, i.e., X blocks all the paths between W and Y , and X is a non-
descendant of W . Note that backdoor criterion is only a sufficient condition, i.e., there could
exist another valid adjustment set Z such that p(Y |do(W)) = EZ [p(Y |Z,W)].

Hence, with the backdoor estimator we can estimate the causal effect using observational
data as E[Y |do(W)] = EXEY [Y |W,X] (proof in Appendix B.1). Similarly, we can estimate
the ATE (E.q. 1.2) using observational data as follows:

ATE: EX [EY [Y |X,W = 1]− EY [Y |X,W = 0]] (1.4)

Similar results for ATE estimation with observational data can also be derived using the
potential outcomes framework [Rubin, 2005] under ignorability assumptions.

Proposition 1.1.3. Let Y 0 and Y 1 denote potential outcomes under treatments do(W = 0)

and do(W = 1). Then ATE (E[Y 1]−E[Y 0]) is identified from observational data (1.4) under
the following assumptions.

• Consistency: The observed outcome we observe reflects the true potential outcome
under the observed treatment, Y = W · Y (1) + (1−W) · Y (0).

• Exchangeability: We do not have unobserved confounders, Y (0), Y (1) ⊥⊥ W | X.
Unobserved confounders would lead to open backdoor paths between Y(0), Y(1) and W,
hence we would not have conditional independence.

• Overlap: The treatment assignment for each sample is probabilistic, 0 < π(x) < 1 ∀x ∈
X. Therefore, each sample has a non-trivial chance of being assigned either to the
control group (W = 0) or the treatment group (W = 1).

14

Background

1.2 Disentangled Representation Learning

In the previous section, we discussed the cause-effect framework in detail and its implication
for designing modular systems that adapt efficiently to distribution shifts. However, we made
the assumption that the causal variables of interest are observed in the dataset, which is
likely to be violated for high-dimensional data like like images and text. In this section, we
will discuss the task of disentangling latent causal factors from observations, and provide a
thorough overview of the related works.

1.2.1 Problem Setup

We assume the causal variables/factors of variation (Z ∈ Rdz) are latent and the observations
(X ∈ Rdx) are a function of the latent causal variables.

x = g(z) ∀z ∈ Z where z ∼ PZ (1.5)

The task of recovering/disentangling the latent causal variables responsible for generating
the data is referred to as causal/disentangled/identifiable representation learning. A common
learning objective considered for the same is the reconstruction objective with Auto-Encoders,
where the optimal encoder f̂ : Rdx → Rdz and decoder ĝ : Rdz → Rdx would satisfy the
following:

Ex∼X ||x− ĝ(f̂(x))||2 = 0 (1.6)

Denoting the learned latent variables as ẑ = f̂(x), the optimal solution of the reconstruction
objective would imply the following under the assumption that g is injective (detailed steps
in Appendix B.3).

ẑ = v(z) where v(z) = ĝ−1 ◦ g(z) ∀z ∈ Z (1.7)

Hence, without further constraints, there is an indeterminacy in recovering the latent
variables given by the function v(z) = ĝ−1 ◦ g(z). Further, given an optimal solution of
the reconstruction objective (f̂ , ĝ), we can create another optimal solution (a ◦ f̂ , ĝ ◦ a−1)

using an invertible function a such that the indeterminacy in latent recovery changes to
a ◦ ĝ−1 ◦ g(z); making the problem not identifiable. The problem of identifiability is that,
given only the distribution over X, it is impossible to distinguish between the two models
(f̂ , ĝ) and (a◦ f̂ , ĝ ◦a−1). This is problematic when one wants to discover interpretable factors
of variations since ẑ and a ◦ ẑ could be drastically different.

Therefore, we need to constrain the problem to restrict the indeterminacy v(z) to simple
functions. E.g., a desirable solution would be to restrict this to linear transformations.

15

Background

Definition 1.2.1. [Linear Identification] If the learned latent variables ẑ are an affine function
of the latent variables (z), ẑ = Az + b ∀z ∈ Z where A ∈ Rdz → Rdz is invertible, we
achieve linear identification.

Further, an ideal solution from practical perspective would be to restrict the linear
transformations to permutation and component-wise scaling, so that each learned latent
variable (Ẑ) corresponds to the latent variables (Z) in a one-to-one manner, i.e, we have
disentangled latent variables.

Definition 1.2.2. [Permutation & Scaling Identification] If the learned latent variables ẑ are
related to the latent variables z by a permutation matrix (Π ∈ Rdz → Rdz) and an invertible
diagonal scaling matrix (Λ ∈ Rdz → Rdz), ẑ = Π ◦ Λ(z) + b ∀z ∈ Z, we achieve permutation
& scaling identification.

We can also relax the definition above for a more general definition of disentanglement
where we allow for component-wise non-linear functions as opposed to component-wise scaling.

Definition 1.2.3. [Disentanglement] If the learned latent variables ẑ are related to the
latent variables z by a diffeomorphism v, ẑ = v(z) ∀z ∈ Z, such that the jacobian of v
is a permuted diagonal matrix, then we achieve disentanglement, as we have a one-to-one
mapping between components of z and ẑ.

Remark. In the above definition for disentanglement, the one-to-one mapping between
the components of z and ẑ may change as we sample different z ∈ Z. This is typically
referred to as local disentanglement as the disentanglement pattern might change across
samples. If the disentanglement pattern remains the same across samples, we refer to it as
global disentanglement. Please refer to Appendix B.2 for more details regarding them.

To achieve the identification guarantees mentioned above, broadly we have two options, we
can put constraints on the data generation process (P(Z), g) and the learner (f̂ , ĝ).

1. Constraints on mixing function. [Taleb and Jutten, 1999, Gresele et al., 2021, Leeb
et al., 2021, Moran et al., 2022, Buchholz et al., 2022, Zheng et al., 2022] Restrict
the function class of the true decoder (g) and the learned decoder (ĝ), as this directly
controls the indeterminacy in latent recovery, v(z) = ĝ−1 ◦ g(z).

2. Constraints on latent distribution. [Hyvärinen et al., 2019, Locatello et al., 2020b,
Lachapelle et al., 2022b, Lippe et al., 2022b, Wang and Jordan, 2022, Roth et al.,
2023] Make assumptions on the distribution of latent variables P(Z) and enforce the
learned latent variables (ẑ = v(z)) to follow these constraints as well. This restricts the
indeterminacy as the transformation v has to preserve the distributional constraints.

16

Background

Note: While we used Auto-Encoders and reconstruction objective in the discussion
above, there are alternative frameworks that can be used for disentangling latent variables
as well, like Variational Auto-Encoders (VAEs) [Khemakhem et al., 2020a], contrastive
learning [Hyvarinen et al., 2019], etc. Auto-Encoders provide an easy way to characterize the
indeterminacy in latent recovery, hence being a popular choice for identifiable representation
learning. For decoder free learning methods, a useful way to characterize the indeterminacy
in latent recovery in such cases is as follows:

ẑ = f̂(x) = f̂ ◦ g(z) = v(z) ∀z ∈ Z (1.8)

A general recipe would be to restrict v(z) = f̂ ◦ g(z) by putting constraints on (f̂ , g) and
other constraints that would follow as per the optimal solution of the learning objective.

Note: Another common assumption in latent variable identification proofs is that we assume
access to infinite data samples when optimizing a learning objective, so we don’t have to
worry about finite sample issues with optimization. This is implicitly assumed in all the
identification results discussed in this report.

1.2.2 Independent Component Analysis (ICA)

If we restrict the latent distribution to have mutually independent components, then the
task of identifiable representation learning is also termed as ICA. We first analyse the case of
Linear ICA, where the mixing function g is linear and the latent variables (Z) have mutually
independent components and no component is gaussian. If the learner {f̂ , ĝ} also mimics
similar constraints of mutual independence on learned latents (ẑ) and (invertible) linear
decoder (ĝ); then we achieve permutation & scaling identification (Def. 1.2.2) [Hyvärinen
and Oja, 2000].

Note that by restricting the (g, ĝ) to be linear, we already achieve linear identification as the
indeterminacy in latent recovery under optimal reconstruction objective (E.q. 1.7) is linear,
v(z) = ĝ−1 ◦ g(z) = Az. Then we can utilize the constraint on the latents (Z, Ẑ) to restrict
the A to only permutation & scaling.

Proposition 1.2.4. Let Z, Ẑ ∈ Rdz be random variables s.t. ẑ = Az ∀z ∈ Z. If Z and
Ẑ have mutually independent components and no component of Z is gaussian, then A is
permutation & scaling matrix.

The proof for the same is provided in Appendix B.4 and it involves the application of
Darmois-Skitovitch Theorem [Theis, 2004], which also provides a formal argument for the
necessity of non-gaussian components in Z. Intuitively, the issue with gaussian components is

17

Background

that the gaussian distribution with mutually independent components is invariant to rotations,
hence it would imply that the indeterminacy (ẑ = Az) can include rotation matrices.

This also leads to an algorithm for linear ICA; learn (f̂ , ĝ) by solving reconstruction objective
(E.q. 1.6) along with minimizing the mutual information between components of ẑ = f̂(X), to
encourage mutual independence. Since estimation of mutual information is a challenging task,
FastICA [Hyvärinen and Oja, 2000] has been proposed that maximizes the non-gaussianity
of each component of ẑ.

Non-linear ICA. Non-linear ICA refers to the case when mixing function g is a general
non-linear function and the latent Z have mutually independent components. The complexity
of the mixing function g determines the identifiability to a large extent, as evident by the
indeterminacy in latent recovery being a function of it. While for the case of linear ICA we
were able to achieve identification upto permutation & scaling, Locatello et al. [2019] show
that the same cannot be guaranteed for non-linear ICA.

Theorem 1.2.5. Locatello et al. [2019] Let Z ∈ Rdz be a random vector with mutually
independent components. Then we can construct an invertible function v : Z → Z such

that v(z) entangles the components of z,
∂vi(z)

∂zj
̸= 0 ∀i, j, and v(Z) has the same marginal

distribution as Z.

Hence, the above theorem states there exists an entangled solution, ẑ = v(z), which
satisfies the distributional constraint of mutual independence and still achieves perfect
reconstruction with the (encoder, decoder) pair as

(
f̂(x) = v(z) , ĝ(z) = g ◦ v−1(z)

)
. Note

that this does not imply that we can never disentangle the true latents for non-linear ICA,
since we may utilize constraints on the mixing function to restrict the function v as we
should have v(z) = ĝ−1 ◦ g(z) for optimal solutions to the reconstruction objective. The
theorem states that in the absence of any further assumptions on the mixing function (g),
the indeterminacy in latent recovery cannot be reduced to simple transformations.

1.2.3 Non-Linear ICA with Auxiliary Information

Given the challenges with unsupervised learning of disentangled representations in Non-Linear
ICA, we discuss alternative solutions in the literature that utilize auxiliary information to have
more information about the latent variables. The earliest works in this direction used time
index as auxiliary information for solving Non-Linear ICA [Hyvarinen and Morioka, 2016],
where the authors showed that if each component of the latent vector evolves independently and
follows a non-stationary time series without temporal dependence, then latent identification

18

Background

is possible. In contrast, [Hyvarinen and Morioka, 2017] showed that if the latent variables
are mutually independent, with each component evolving in time following a stationary time
series with temporal dependence, then also identification is possible. Hyvarinen et al. [2019]
further generalized the previous results, where instead of using time, the authors require
observation of general auxiliary information. We discuss their work in more detail given its
importance in presenting a unified framework for utilizing auxiliary information.

Non-Linear ICA using auxiliary variables and contrastive learning.
In this work [Hyvarinen et al., 2019], the authors assume that alongside the data (X ∈ Rdx)
we also observe auxiliary information (U ∈ Rdu) which renders the latent variables Z ∈ Rdz to
be conditionally independent, i.e, Zi ⊥ Zj | U ∀i, j. The data generation process is described
as follows:

u ∼ p(U) , z ∼ p(Z|U) , x = g(z) where p(Z|U) =
dz∏
i=1

qi(Zi, U) (1.9)

Note that qi(Zi, U) is a function that characterizes the distribution p(Zi|U) and the above
factorization of p(Z|U) is a result of the conditional independence assumption.

For the learning objective, given a dataset {x, u} ∼ P (X,U) the authors propose to use a
variant of contrastive learning where the task is to classify between correctly matched pairs
(x, u) and randomly matched pairs (x, u∗) where u∗ denotes a random sample from p(U). To
solve this binary classification task, they use logistic regression as shown below with the logit
function ψ(x, u) and σ representing the sigmoid function.

f̂ , ĥ← min
f,h

Ex,u

[
− log(σ(ψ(x, u))) + log(σ(ψ(x, u∗))

]
where ψ(x, u) =

dz∑
i=1

hi(fi(x), u)

(1.10)
The logit is modeled by the learner as ψ(x, u) =

∑dz
i=1 hi(fi(x), u) where the encoder f :

Rdx → Rdz is learning the representation of the data (x) and each hi is a function that maps
(fi(x), u) to a scalar value. The inductive bias of addition of terms (hi(fi(x), u)) that depend
on a particular component fi(x) encourages conditional independence. We now state their
identification results for the learned latents (ẑ = f̂(x)) as per the optimal solution to the
contrastive learning objective above.

Theorem 1.2.6. Given the data generation process (E.q. 1.9) and the optimal solution (f̂ , ĥ)
under the learning objective (E.q. 1.10), along with the extra assumptions stated below:

1. The learned encoder f̂ = (f̂1, · · · , f̂dz) and the mixing function g are C2-diffemorphisms.

19

Background

2. The functions qi(zi, u) in the log density function p(Z|U) are C2-functions.

3. Assumption of Sufficient Variability. Denote the diagonal terms of the jacobian and
hessian of q(z, u) w.r.t z as w(z, u) =

(∂q1(z1,u)
∂z1

, · · · , ∂qdz (zdz ,u)
∂zdz

, ∂2q1(z1,u)
∂2z1

, · · · , ∂
2qdz (zdz ,u)

∂2zdz

)
.

Then ∀z ∈ Z ∃ 2 ∗ dz + 1 values for u such that the following set of vectors are inde-
pendent:

{
w(z, ui)− w(z, u0) | i ∈ [1, 2 ∗ dz]

}
.

Then we achieve disentanglement (Def. 1.2.3) with the learned latent variables ẑ where
ẑ = f̂(x).

To get more intuition behind the identification result, we provide a proof sketch in
Appendix B.5. While the paper generalizes the Non-Linear ICA problem beyond mutually
independent latent variables, it still does not allow for general SCM in the latent space
as the latent variables have to satisfy conditional independence given the auxiliary infor-
mation. This framework has been extended for VAE [Khemakhem et al., 2020a], energy
based models [Khemakhem et al., 2020d], etc., but with similar assumptions of conditional
independence in the latent space. Further, this approach has been extended for datasets with
sparse temporal dependencies [Hälvä and Hyvarinen, 2020, Yao et al., 2022b,a, Lippe et al.,
2022b,a, Lachapelle et al., 2022b, Lachapelle and Lacoste-Julien, 2022].

Weakly-supervised disentanglement without compromises. Another major
source of auxiliary information exploited in prior works is sparse data augmentations. This
is also referred to as weak supervision in the literature since we do not consider labelled
supervised data as auxiliary information. Locatello et al. [2020a] introduced this idea of
using weak supervision in the form of data pairs X ∈ Rdx , X̃ ∈ Rdx under the assumption
that the latent factors across these pairs (Z ∈ Rdz , Z̃ ∈ Rdz) have some shared components,
i.e., the change from Z to Z̃ is sparse and not all of the components change. Specifically,
we first sample a non-trivial set of coordinates S that specify the shared components across
pairs, Zi = Z̃i ∀i ∈ S. Further, they assume both Z, Z̃ are continuous random variables with
mutually independent components. The data generation process is described as follows:

S ∼ p(S) , z ∼ p(Z) =
dz∏
i=1

p(Zi) , y ∼ p(Y) =
k∏

i=1

p(Yi) where |S| = dz − k > 0

x = g(z) , x̃ = g(z̃) where z̃ = h(z, y, S) s.t. z̃S = zS , z̃S̄ = y , z̃S̄ ̸= zS̄
(1.11)

Note that y ∈ Rk denote the latent components in z̃ that are independent of the latent
variables z, hence z̃ has same components as z for coordinates in set S and it has same
components as y for coordinates in S̄ = [d]/S. Also, z and z̃ do not have same components

20

Background

for the coordinates in S̄.

Consider the Auto-Encoder framework such that the optimal encoder (f̂) and decoder
(ĝ) achieve zero reconstruction error for both X&X̃, while also preserving the constraint
that learned latent variables (ẑ, ˆ̃z) have mutually independent components and they share
components for coordinates in the set S.

Ex∼X ||x− ĝ(f̂(x))||2 = 0 , Ex̃∼X̃ ||x̃− ĝ(f̂(x̃))||
2 = 0

ẑi ⊥ ẑj ∀i, j , ˆ̃zi ⊥ ˆ̃zj ∀i, j where ẑ = f̂(x) , ˆ̃z = f̂(x̃)

ẑi = ˆ̃zi ∀i ∈ S , ẑj ̸= ˆ̃zj ∀j ∈ S̄

(1.12)

We now state their identification result for a fixed and known set S. For more details on
the proof sketch and extensions for the case of unknown S varying across samples, please
check Appendix B.6.

Theorem 1.2.7. Given the data generation process (E.q. 1.11) and the optimal solution
(f̂ , ĝ) under the learning objective (E.q. 1.12), along with the following extra assumptions:

1. The mixing function/true decoder (g) and the learned decoder (ĝ) are diffeomorphisms

2. The learner knows the coordinate set S which is fixed across all the data pairs.

Then we achieve block disentanglement, i.e., ẑ = v(z) such that ẑS depends only on the latent
component in S (zS) and ẑS̄ depends only on the latent components in S̄ (zS̄).

The major limitation with their identification result is the assumption of mutual indepen-
dence in the latent variables Z. This implies that we can only disentangle causal variables for
latent SCMs with the trivial causal graph (no connections between variables). This restrictive
assumption in the latent space has been relaxed in follow up works [Von Kügelgen et al.,
2021, Brehmer et al., 2022], where they model data augmentations as interventions in the
latent space. Ahuja et al. [2022] model data augmentations as perturbations in the latent
space (Z̃ = Z + δ where δ is a sparse vector), and prove identification results without strong
assumptions on the latent space.

From counterfactuals to interventions. A key limitation of this perspective of
data augmentations as weak supervision is that we need paired data samples (x, x̃), essentially
counterfactuals, as the non-intervened latents corresponding to x and x̃ are exactly the
same. For certain practical scenarios like genetic perturbations Dixit et al. [2016], we might
have access to intervention distribution as result of these perturbations, however, we don’t
necessarily have access to pre-intervention and post-intervention paired samples. Hence,

21

Background

utilizing intervention distributions as opposed to counterfactual samples as a source of weak
supervision is a focus of several recent works [Ahuja et al., 2023, Squires et al., 2023, Buchholz
et al., 2024, von Kügelgen et al., 2024, Jiang and Aragam, 2023, Zhang et al., 2024]. Ahuja
et al. [2023] were amongst the first works to propose latent identification results that go
beyond the assumption of paired counterfactual data and only operate with interventional
distributions. They assume that along with observed data x = g(z) where z ∼ Z, we
also observe data x(i) = g(z(i)) where z(i) ∼ Z(i) represents the intervention on the latent
component zi. Therefore, across the environments {x} and {x(i)} we might not have exact
pairs such that the non-intervened variables are the same, however, we know that these
data samples differ in terms of intervention on a particular latent target. Under further
assumptions on the mixing function g : Rdz → Rdx and observing perfect interventions on
all latent components, they proved that it is possible to achieve permutation & scaling
identification Definition 1.2.2. This was extended for soft interventions by Zhang et al. [2024]
and for general diffeomorphisms as mixing functions by Buchholz et al. [2024] and von
Kügelgen et al. [2024].

1.2.4 Metrics for Disentanglement

Mean Correlation Coefficient (MCC): MCC is a standard metric used in
prior works [Hyvarinen and Morioka, 2017, Hyvarinen et al., 2019, Khemakhem et al.,
2020a, Zimmermann et al., 2021] to measure permutation and scaling based identification
(Definition 1.2.2). The metric is computed by first obtaining the correlation matrix (ρ(Z, Ẑ))
between the recovered latents Ẑ ∈ Rdz and the true latents Z ∈ Rdz . Let’s define |ρ(Z, Ẑ)|
as the absolute values of the correlation matrix. Then we find a matching (assign each
row to a column in |ρ(Z, Ẑ)|) such that the average absolute correlation is maximized and
return the optimal average absolute correlation. Intuitively, we find the optimal way to
match the components of the predicted latent representation (Ẑ) and components of the true
representation (Z). Notice that a perfect absolute correlation of one for each matched pair of
components would imply identification up to permutations.

MCC := max
π

dz∑
i=1

|ρ(Z, πẐ)|i,i where π ∈ Rdz×dz is a permutation matrix (1.13)

The correlation matrix ρ is typically computed via pearson/spearman correlation, and the
optimization problem with searching over the space of permutation matrices is typically
solved as a linear sum assignment problem [Crouse, 2016].

22

Background

Disentanglement, Completeness, and Informativeness (DCI): DCI was
introduced by Eastwood and Williams [2018] and aims to infer the relevance of each dimension
of learned latent Ẑ ∈ Rdz in predicting the true latent Z ∈ Rdz . We learn dz different regression
models {fi}dzk=1 where the regression model fi : Rdz → R takes as input the learned latent
Ẑ and predicts Zi. Lets denote the coefficient vector learned by the regression model fi as
wi ∈ Rdz , and construct a matrix W = [w1, · · · , wdz] ∈ Rdz×dz . Intuitively, Wij denotes the
relevance of Ẑi in predicting Zj . Using this matrix W , DCI would compute a disentanglement
score for each inferred latent Ẑi and a completeness score for each true latent Zi.

To get the disentanglement score for Ẑi, we determine whether its informative for predicting
only a single true latent component. We first compute the probability of Ẑi being relevant
for predicting Zj as pij = Wij/

∑
j Wij. Then we measure the entropy of the multinomial

distribution with probabilities pi = [pi1, · · · , pidz], as a lower entropy would imply a sparser pi,
essentially more disentangled. Hence, we have Di = 1−

∑dz
j=1 pij log pij, which is aggregated

across different components of Ẑ to get the final disentanglement score.

DCI-Disentanglement :=
dz∑
i=1

ρiDi where ρi =
∑
j

Wij/
∑
i,j

Wij (1.14)

If we only rely on DCI-Disentanglement score then we won’t penalize the scenario where
some true latent component are not predicted by any component of the predicted latent.
Hence, we also compute a completeness score, which is an analogue to the disentangled score
and it aims to capture whether each true latent component Zj is captured by only a single
predicted latent component. Hence, we have Cj = 1−

∑dz
i=1 pij log pij where the distribution

pj = [p1j, · · · , pdzj] and pij = Wij/
∑

iWij, that involves aggregation on the predicted latent
dimension now.

DCI-Completeness :=
dz∑
i=1

ρjCj where ρj =
∑
i

Wij/
∑
i,j

Wij (1.15)

Some papers also combine both the DCI-Disentanglement and DCI-Completeness score
into a single score by taking the harmonic mean between them.

23

Chapter 2

Towards efficient representation

identification in supervised learning

This chapter is based on the contents of the paper "Towards efficient representation identi-
fication in supervised learning" by Kartik Ahuja*, Divyat Mahajan*, Vasilis Syrgkanis,
and Ioannis Mitliagkas. The paper was accepted at the Conference on Causal Learning and
Reasoning [CleaR 2022].

Kartik Ahuja proposed the original project idea and developed the theory for latent identi-
fication, with input from Ioannis Mitliagkas. Divyat Mahajan led the experimental design
under the guidance of Kartik Ahuja and obtained all the empirical results presented in the
paper. Additionally, Divyat Mahajan was actively involved in discussions regarding the
theoretical results. Kartik Ahuja led the overall drafting of the paper, while Divyat Mahajan
led the writing of the rebuttals and the camera-ready version. Vasilis Syrgkanis and Ioannis
Mitliagkas provided supervision throughout the project.

2.1 Introduction

Like we discussed before in Section 1.2, general process of disentanglement is impossible in
the absence of side knowledge of the structure of the data generation process [Hyvärinen and
Pajunen, 1999, Locatello et al., 2019]. However, under additional structural assumptions on
the data generation process, it is possible to invert the data generation process and recover
the underlying factors of variation [Hyvarinen and Morioka, 2016]. Recently, there have been
works [Hyvarinen et al., 2019, Khemakhem et al., 2020a] which present a general framework
that relies on auxiliary information (e.g., labels, timestamps) to disentangle the latents. While
they have made remarkable progress in the field of disentanglement, these works make certain

24

Towards efficient representation identification in supervised learning

key assumptions highlighted below that we significantly depart from.

• Labels cause the latent variables. In supervised learning datasets, there are two
ways to think about the data generation process—a) labels cause the latent variables and
b) latent variables cause the labels. Schölkopf et al. [2012] argue for the former view, i.e.,
labels generate the latents, while [Arjovsky et al., 2019] argue for the latter view, i.e., latents
generate the label (see Figure 2.1). Current non-linear ICA literature [Hyvarinen et al., 2019,
Khemakhem et al., 2020a] assumes the label knowledge renders latent factors of variation
conditionally independent, hence it is compatible with the former perspective [Schölkopf
et al., 2012]. But the latter view might be more natural for the setting where a human assigns
labels based on the underlying latent factors. Our goal is to enable disentanglement for this
case when the latent variables cause the labels [Arjovsky et al., 2019].

• Amount of auxiliary information. Existing works [Hyvarinen et al., 2019, Khemakhem
et al., 2020a] require a lot of auxiliary information, e.g., the number of label classes should
be twice the total dimension of the latent factors of variation to guarantee disentanglement.
We seek to enable disentanglement with lesser auxiliary information.

Contributions. We consider the following data generation process – latent factors generate
the observations (raw features) and the labels for multiple tasks, where the latent factors
are mutually independent. We study a natural extension of the standard empirical risk
minimization (ERM) (Vapnik [1992]) paradigm. The most natural heuristic for learning
representations is to train a neural network using ERM and use the output from the represen-
tation layer before the final layer. In this work, we propose to add a constraint on ERM to
facilitate disentanglement – all the components of the representation layer must be mutually
independent. Our main findings for the representations learned by the constrained ERM are
summarized below.
• If the number of tasks is at least equal to the dimension of the latent variables, and the

latent variables are not Gaussian, then we can recover the latent variables up to permutation
and scaling.
• If we only have a single task and the latent variables come from an exponential family

whose log-density can be expressed as a polynomial, then under further constraints on both
the learner’s inductive bias and the function being inverted, we can recover the latent variables
up to permutation and scaling.
• To implement constrained ERM, we propose a simple two-step approximation. In

the first step, we train a standard ERM based model, and in the subsequent step we carry
out linear ICA [Comon, 1994] on the representation extracted from ERM. We carry out
experiments with the above procedure for regression and classification. Our experiments

25

Towards efficient representation identification in supervised learning

Y Y

Z1 Z2

X

Z1 Z2

X
Labels cause the latent variables Latent variables cause the label

(a) (b)

Figure 2.1: (a) DGP in Hyvarinen et al. [2019]; (b) DGP studied in this work.

show that even with the approximate procedure, it is possible to recover the true latent
variables up to permutation and scaling when the number of tasks is smaller than the latent
dimension.

2.2 Problem Setup

Assumption 2.2.1 (Data Generation Process). The data generation process for regression
is described as

Z ← h(NZ) , X ← g(Z) , Y ← ΓZ +NY (2.1)

where we have the following:

• NZ ∈ Rd is noise, h : Rd → Rd generates the latent variables Z ∈ Rd. The components
of Z are mutually independent, non-Gaussian, and have finite second moments.

• g : Rd → Rd is a bijection that generates the observations X from latent variables Z

• Γ ∈ Rk×d is a matrix that generates the label Y ∈ Rk, and NY ∈ Rk is the noise vector
(NY is independent of Z and E[NY] = 0)

Note that d is the dimension of the latent representation, and k corresponds to the number
of tasks. We adapt the data generation process to multi-task classification as follows by
changing the label generation process.

Y ← Bernoulli
(
σ
(
ΓZ
))

(2.2)

where (σ) corresponds to the sigmoid function applied elementwise to ΓZ and outputs the
probabilities of the tasks, and Bernoulli operates on these probabilities elementwise to generate
the label vector Y ∈ {0, 1}k for the k tasks.

26

Towards efficient representation identification in supervised learning

Our objective is to learn the model g−1 from the observed data and labels pairs (X, Y),
such that for new observations X we can recover the latent variables Z that generated X.
Let us denote the model learned as ĝ−1 and the recovered latents as ẑ = ĝ−1(x), then our
goal is to obtain permutation & scaling identification (Definition 1.2.2).

Remark. Prior works on using auxiliary information (labels) for disentanglement [Hyvarinen
et al., 2019, Khemakhem et al., 2020a] consider the data generation process where the labels
cause the latent variables (E.q. 1.9). This may be valid for some settings, but it is not
perfectly suited for human labelled datasets where a label is assigned based on the underlying
latent factors of variations. Hence, we focus on the opposite perspective [Arjovsky et al., 2019]
when the latent variables generate the labels. Our setting could be interpreted as multi-task
supervised learning, where the downstream task labels serve as the auxiliary information
generated from shared latent variables. We also contrast the DAGs of the two data generation
processes in Figure 2.1.

2.3 Identifiability Analysis of IC-ERM

The previous section established our objective of learning the model g−1 (or the decoder g)
from the observed data (X, Y). We first train a supervised learning model to predict the
labels Y from X. For the rest of the work, we will assume that the predictor we learn takes
the form Θ ◦ Φ, where Θ ∈ Rk×d is a linear predictor that operates on the representation
Φ : Rd → Rd. As a result, the hypothesis space of the functions that the learner searches over
has two parts: Θ ∈ HΘ corresponding to the hypothesis class of linear maps, and Φ ∈ HΦ,
where HΦ corresponds to the hypothesis class over the representations. We measure the
performance of the predictor on an instance (X, Y) using the loss ℓ

(
Y,Θ ◦ Φ(X)

)
(mean

square error for regression, cross-entropy loss for classification). We define the risk achieved
by a predictor Θ ◦ Φ as R

(
Θ ◦ Φ

)
= E

[
ℓ
(
Y,Θ ◦ Φ(X)

)]
, where the expectation is taken with

respect to the data (X, Y).

Independence Constrained ERM (IC-ERM): The representations (Θ) learnt by ERM as
described above have no guarantee of recovering the true latent variables up to permutations.
Hence, we propose a new objective where we want the learner to carry out constrained
empirical risk minimization, where the constraint is placed on the representation layer that all
components of the representation are mutually independent. We provide the formal definition
of mutual independence for the convenience of the reader below.

Definition 2.3.1. Mutual independence. A random vector V = [V1, · · · , Vd] is said to be
mutually independent if for each subsetM⊆ {1, · · · , d} we have p({Vi}i∈M) =

∏
i∈M p(Vi).

27

Towards efficient representation identification in supervised learning

We state the proposed independence constrained ERM (IC-ERM) objective formally as
follows:

min
Θ∈HΘ,Φ∈HΦ

R(Θ ◦ Φ) s.t. Φ(X) is mutually independent (Definition 2.3.1) (2.3)

Before we state our main latent identification result, we state some extra assumptions on
the hypothesis class of the representations (HΦ) and the classifier (HΘ).

Assumption 2.3.2. Assumption on HΦ and HΘ. For the true solutions (g−1, Γ), we have
g−1 ∈ HΦ and Γ ∈ HΘ. For the case when k = d, the set HΘ corresponds to the set of all
invertible matrices.

The above assumption ensures that the true solutions g−1 and Γ are in the respective
hypothesis classes that the learner searches over. Also, the invertibility assumption on the
hypothesis inHΘ is needed to ensure that we do not have redundant tasks for the identification
of the latent variables.

We now state our main result that show the IC-ERM learning objective would recover
the true latent variables up to permutations & scaling.

Theorem 2.3.3. Given the data generation process (Assumption 2.2.1) and the optimal
solution Θ† ◦ Φ† to IC-ERM (2.3) with ℓ as square loss for regression and cross-entropy loss
for classification, along with the exta assumptions stated below:

• Assumption 2.3.2 for the true solution g−1 and Γ.

• The number of tasks k is equal to the dimension of the latent d,

Then we achieve permutation & scaling identifiability (Definition 1.2.2) with the learned latent
variables ẑ = Φ†(x).

The proof for the same is available in Appendix Section C.2. This implies that for the
DAGs in Figure 2.1 (b), it is possible to recover the true latents up to permutation and scaling.
This result extends the current disentanglement guarantees [Khemakhem et al., 2020d] that
exist for models where labels cause the latent variables (latent variables are conditionally
independent) to the settings where latent variables cause the label (latent variables are not
conditionally independent). In multi-task learning literature [Caruana, 1997, Zhang and
Yang, 2017], it has been argued that learning across multiple tasks with shared layers leads
to internal representations that transfer better. The above result states the conditions when
the ideal data generating representation shared across tasks can be recovered.

ERM obtains Linear Identification. An important insight from the proof of the above

28

Towards efficient representation identification in supervised learning

Theorem is that ERM achieves linear identification (Definition 1.2.1), which we highlight
in Appendix C.1. The interesting part about this result is that it does not require us to
assume that the latent variables are mutually independent and non-gaussian. Therefore, one
can view our result in a modular fashion, ERM reduces the disentanglement problem with
non-linear mixing function to disentanglement with a linear mixing function. Then we can use
existing techniques to tackle the linear mixing disentanglement problem, which in our current
work is Linear ICA (hence the assumption of mutual independence and non-gaussianity).

Identification with fewer tasks than latent dimension. It is intuitive that more
auxiliary information/numbers of tasks (k) should help us to identify the latent variables as
they are shared across these different tasks. The theorem above states that identification is
possible when the number of tasks k is equal to the dimension of the latent variables d. We
also analyze the case when the number of tasks are less than the latent dimension, and even
handle the extreme case of a single. Please refer to Appendix C.4 for more details.

2.4 Methodology: Proposed Implementation for

IC-ERM

In the previous section, we showed the identification guarantees with the IC-ERM objective.
However, solving this objective is non-trivial, since we need to enforce independence on the
representations learnt. We propose a simple two step procedure as an approximate approach
to solve the above problem. The learner first carries out standard ERM stated as

Θ†,Φ† ∈ argmin
Θ∈HΘ,Φ∈HΦ

R(Θ ◦ Φ) (2.4)

The learner then searches for a linear transformation Ω that when applied to Φ† yields a
new representation with mutually independent components. We state this as follows. Find
an invertible Ω ∈ Rd×d such that

Z† = Ω ◦ Φ†(X) where the components of Z† are mutually independent (2.5)

Note that a solution to the above equation (2.5) does not always exist. However, if we
can find a Ω that satisfies the above (2.5), then the classifier Θ ◦ Ω−1 and the representation
Ω ◦ Φ†(X) together solve the IC-ERM (2.3) assuming Θ ◦ Ω−1 ∈ HΘ and Ω ◦ Φ† ∈ HΦ.
To find a solution to the equation (2.5) we resort to the approach of linear ICA [Comon,

29

Towards efficient representation identification in supervised learning

1994]. The approach has two steps. We first whiten Φ†(X), and for simplicity, we assume∗

Φ†(X) is zero mean, although our analysis extends to the non-zero mean case as well.
Define V to be the covariance matrix of Φ†(X). If the covariance V is invertible†, then
the eigendecomposition of V is given as V = UΛ2UT. We obtain the whitened data Φ∗(X)

as follows Φ∗(X) = Λ−1UTΦ†(X). Consider a linear transformation of the whitened data
and denote it as Z∗ = Ω ◦ Φ∗(X) and construct another vector Z ′ such that its individual
components are all independent and equal in distribution to the corresponding components
in Z∗. Our goal is to find an Ω such that the mutual information between Z∗ and Z

′ is
minimized. To make dependence on Ω explicit, we denote the mutual information between
Z

′ and Z∗ as I(Ω ◦ Φ∗(X)). We state this as the following optimization

Ω† ∈ argmin
Ω,Ω is invertible

I(Ω ◦ Φ∗(X)) (2.6)

We denote the above two step approximation method as ERM-ICA and summarize it below:

• ERM Phase: Learn Θ†,Φ† by solving the ERM objective (Eq: 2.4).

• ICA Phase: Learn Ω† by linear ICA (Eq: 2.6) on the representation from ERM Phase
(Φ†).

The above ERM-ICA procedure outputs a classifier Θ† ◦ (Ω†)−1 and representation Ω† ◦ Φ†

that is an approximate solution to the IC-ERM problem (2.3). While the proposed ERM-ICA
procedure is a simple approximation, we do not know of other works that have investigated this
approach theoretically and experimentally for recovering the latents. Despite its simplicity,
we can show (similar to Theorem 2.3.3) that ERM-ICA achieves permutation & scaling
identification. The proof for the same can be found in Appendix C.3.

Theorem 2.4.1. If Assumptions 2.2.1, 2.3.2 hold and the number of tasks k is equal to
the dimension of the latent d, then the solution Ω† ◦ Φ† to ERM-ICA ((2.4), (2.6)) with ℓ
as square loss for regression and cross-entropy loss for classification identifies true Z up to
permutation and scaling.

2.5 Empirical Findings

In this section, we analyse how the practical implementations of our theory holds up for both
regression and classification tasks. The code repository to reproduce these experiments can
be accessed from the link: https://github.com/divyat09/ood_identification.

∗We also assume Φ†(X) has finite second moments.
†If it is not invertible, then we first need to project Φ†(X) into the range space of V

30

https://github.com/divyat09/ood_identification

Towards efficient representation identification in supervised learning

2.5.1 Experiment Setup

Data Generation Process. We use the data generation process described in Assumption
2.2.1. The components of Z are i.i.d. and follow discrete uniform {0, 1} distribution. Each
element of the task coefficient matrix Γ is i.i.d. and follows a standard normal distribution.
The noise in the label generation is also standard normal. We use a 2-layer invertible MLP
to model g and follow the construction used in Zimmermann et al. [2021].∗ We carry out
comparisons for three settings, d = {16, 24, 50}, and vary tasks from k = {d

2
, 3d

4
, d}. The

dataset size used for training and test is 5000 data points, along with a validation set of 1250
data points for hyper parameter tuning. For the classification task, we have an additional
step for converting the regression labels to binary labels as Y ← Bernoulli(σ(ΓZ)). Also, the
noise in the Γ sampling is set to a higher value (10 times that of a standard normal), as
otherwise the Bayes optimal accuracy is much smaller.

Baselines. We compare our method (ERM-ICA) against two natural baselines. a) ERM.
In this case, we carry out standard ERM (2.4) and use the representation learned at the layer
before the output layer. b) ERM-PCA. In this case, we carry out standard ERM (2.4)
and extract the representation learned at the layer before the output layer. We then take
the extracted representation and transform it using principal component analysis (PCA).
In other words, we analyze the representation in the eigenbasis of its covariance matrix.
c) ERM-ICA. This is the main approach ((2.4), (2.5)) that approximates the IC-ERM
objective (2.3). Here we take the representations learnt using ERM (2.4) and transform them
using linear independent component analysis (ICA) (2.6). We define mean square error and
cross-entropy as our loss objectives for the regression and classification task respectively.

Model parameters and evaluation metrics. We use a two layer fully connected neural
network and train the model using stochastic gradient descent. The architecture and the
hyperparameter details for the different settings are provided in Appendix C.6. The models
are evaluated on the test dataset using the following two metrics.

To measure the label (Y) prediction performance, we use the average R2 (coefficient of
determination) and the average accuracy across tasks in the regression and classification
task respectively. We check this metric to ensure that the representations do not lose any
information about the label. To measure the latent identification performance, we use the
MCC metric (E.q. 1.13), since it is specifically designed to capture the permutation & scaling
identifiability.

∗https://github.com/brendel-group/cl-ica/blob/master/main_mlp.py

31

https://github.com/brendel-group/cl-ica/blob/master/main_mlp.py

Towards efficient representation identification in supervised learning

8 12 16
Number of Tasks

0.6

0.8

1.0

R2

Label Prediction

ERM ERM-ICA ERM-PCA

8 12 16
Number of Tasks

0

25

50

75

100

M
CC

Latent Prediction

ERM ERM-ICA ERM-PCA

Figure 2.2: Comparison of label and latent prediction performance (regression, d = 16).

12 18 24
Number of Tasks

0.6

0.8

1.0

R2

Label Prediction

ERM ERM-ICA ERM-PCA

12 18 24
Number of Tasks

0

25

50

75

100

M
CC

Latent Prediction

ERM ERM-ICA ERM-PCA

Figure 2.3: Comparison of label and latent prediction performance (regression, d = 24).

25 37 50
Number of Tasks

0.6

0.8

1.0

R2

Label Prediction

ERM ERM-ICA ERM-PCA

25 37 50
Number of Tasks

0

25

50

75

100
M

CC

Latent Prediction

ERM ERM-ICA ERM-PCA

Figure 2.4: Comparison of label and latent prediction performance (regression, d = 50).

2.5.2 Results

Regression. Figure 2.2, 2.3 and 2.4 show a comparison of the performance of the three
approaches across d = 16, d = 24, and d = 50 for various tasks. In all the cases, we find
that the method ERM-ICA is significantly better than the other approaches in terms of
guaranteeing permutation and scaling based identification. All three approaches have similar
label prediction performance.

Classification. Figure 2.5, 2.6. and 2.7 show a comparison of the performance of the three
approaches across d = 16, d = 24, and d = 50 for various tasks. In both cases, we find
that the method ERM-ICA is better than the other approaches in terms of guaranteeing
permutation and scaling based identification, except in the case of 24 data dimensions with
a total of 12 tasks. All three approaches have similar label prediction performance. For
classification, unlike regression, the improvements are smaller and we do not see improvement

32

Towards efficient representation identification in supervised learning

8 12 16
Number of Tasks

0

20

40

60

80

100

Ac
cu

ra
cy

Label Prediction

ERM ERM-ICA ERM-PCA

8 12 16
Number of Tasks

0

20

40

60

80

100

M
CC

Latent Prediction

ERM ERM-ICA ERM-PCA

Figure 2.5: Comparison of label and latent prediction performance (classification, d = 16)

12 18 24
Number of Tasks

0

20

40

60

80

100

Ac
cu

ra
cy

Label Prediction

ERM ERM-ICA ERM-PCA

12 18 24
Number of Tasks

0

20

40

60

80

100

M
CC

Latent Prediction

ERM ERM-ICA ERM-PCA

Figure 2.6: Comparison of label and latent prediction performance (classification, d = 24)

25 37 50
Number of Tasks

0

20

40

60

80

100

Ac
cu

ra
cy

Label Prediction

ERM ERM-ICA ERM-PCA

25 37 50
Number of Tasks

0

20

40

60

80

100

M
CC

Latent Prediction

ERM ERM-ICA ERM-PCA

Figure 2.7: Comparison of label and latent prediction performance (classification, d = 50)

for d = 50. We see a worse performance in the classification setting because the ERM model
does not learn the Bayes optimal predictor unlike regression.

Discussion. We have shown that ERM-ICA achieves significant improvement in latent
recovery with much fewer tasks (up to d

2
). Note that we only approximate equation (2.3)

with ERM-ICA, and if we build better approximations of the ideal approach (IC-ERM), then
we can witness gains with even fewer tasks. We believe that building such approximations is
a fruitful future work.

33

Towards efficient representation identification in supervised learning

2.6 Conclusion

In this work, we analyzed the problem of disentanglement in a natural setting, where latent
factors cause the labels, a setting not well studied in the ICA literature. We show that if
ERM is constrained to learn independent representations, then we can have latent recovery
from learnt representations even when the number of tasks is small. We propose a simple
two step approximate procedure (ERM-ICA) to solve the constrained ERM problem, and
show that it is effective in a variety of experiments. Our analysis highlights the importance
of learning independent representations and motivates the development of further approaches
to achieve the same in practice.

A limitation of our work is the restriction of mutual independence in the latent space, which
prevents us from using this approach for more practical scenarios where latent variables
maybe correlated. Recent work by Lachapelle et al. [2022a] also deals with the same setup
of multi-task supervised learning and made additional assumptions on the sparsity of the
labeling function Γ (map from latent vectors Z to labels Y), which allows them to extended
latent identification beyond mutually independence latent variables. Further, Fumero et al.
[2024] also propose an identifiable sparsity guided multi-task learning method and benchmark
it on several real-world datasets for robustness to distribution shifts. Hence, assumptions of
sparsity on Γ in our framework is a promising direction for identifiable multi-task learning.

Another way to move beyond mutually independent latents in our setup is to consider the works
on factorized support [Wang and Jordan, 2021, Roth et al., 2023]. Factorized/Independent
support refers to the case when the DAG describing the latent variables does not contain
any edges, however, there is correlation due to the presence of an (unobserved) confounder.
Hence, latent variables with factorized support goes one step beyond mutually independent
latents for modeling scenarios with correlations. Recent work by [Ahuja et al., 2023] provides
latent identification results for latents with factorized support and linear mixing functions
to generate observations from them. Since in our framework ERM already obtains linear
identification (Appendix C.1), we could use the result for identification of factorized support
latent under linear mixing to achieve permutation & scaling identification. The natural
extension of our ERM-ICA algorithm would also be to incorporate independence of support
penalty (IOSS) [Wang and Jordan, 2021, Ahuja et al., 2023] instead of Linear ICA in the
second step.

34

Chapter 3

Additive Decoders for Latent

Variables Identification and

Cartesian-Product Extrapolation

This chapter is based on the contents of the paper "Additive decoders for latent variables
identification and cartesian-product extrapolation" by Sébastien Lachapelle*, Divyat Maha-
jan*, Ioannis Mitliagkas, and Simon Lacoste-Julien. The paper was accepted at the Advances
in Neural Information Processing Systems [NeurIPS 2023] for an oral presentation.

Sébastien Lachapelle proposed the original project idea and developed the theory for latent
identification, with input from Simon Lacoste-Julien. Divyat Mahajan led the experimental
design under the guidance of Sébastien Lachapelle and obtained all the empirical results.
Additionally, Divyat Mahajan played an active role in discussions regarding the theoretical
results on local disentanglement and extrapolation. Sébastien Lachapelle led the writing,
with Divyat Mahajan contributing specifically to the experiments section. Ioannis Mitliagkas
and Simon Lacoste-Julien provided supervision throughout the project.

3.1 Introduction

In this chapter we focus on the question on unsupervised disentangled representation learning
and aim to provide latent identification results without additional weak supervision. As we
have seen that without assumptions on the mixing function identification is hopeless for the
unsupervised case (Theorem 1.2.5), we focus on decoder architectures from Object-centric
representation learning (OCRL) as an inspiration. OCRL aims to learn a representation in
which the information about different objects are encoded separately [Eslami et al., 2016,

35

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

+ =

Figure 3.1: Left: Additive decoders model the additive structure of scenes composed of
multiple objects. Right: Additive decoders allow to generate novel images never seen during
training via Cartesian-product extrapolation (Corollary 3.4.8). Purple regions correspond
to latents/observations seen during training. The blue regions correspond to the Cartesian-
product extension. The middle set is the manifold of images of balls. In this example, the
learner never saw both balls high, but these can be generated nevertheless thanks to the
additive nature of the scene. Note. The figure has a small inconsistency that it uses f to
denote the decoder, while we use g everywhere in the chapter for the same.

Greff et al., 2016, Burgess et al., 2019, Greff et al., 2019, Engelcke et al., 2020, Locatello
et al., 2020c]. These approaches have shown impressive results empirically, but the exact
reason why they can perform this form of segmentation without any supervision is poorly
understood.

Our first contribution is an analysis of the identifiability of a class of decoders we call additive
(Definition 3.3.2). Essentially, a decoder g(z) acting on a latent vector z ∈ Rdz to produce an
observation x is said to be additive if it can be written as g(z) =

∑
B∈B g

(B)(zB) where B is a
partition of {1, . . . , dz}, g(B)(zB) are “block-specific” decoders and the zB are non-overlapping
subvectors of z. This class of decoder is particularly well suited for images x that can be
expressed as a sum of images corresponding to different objects (left of Figure 3.1). Unsur-
prisingly, this class of decoder bears similarity with the decoding architectures used in OCRL
(Section 3.2), which already showed important successes at disentangling objects without
any supervision. Our identifiability results provide conditions under which exactly solving
the reconstruction problem with an additive decoder identifies the latent blocks zB up to
permutation and block-wise transformations (Theorems 3.4.4 & 3.4.6). We believe these
results will be of interest to both the OCRL community, as they partly explain the empirical
success of these approaches, and to the nonlinear ICA and disentanglement community, as
it provides an important special case where identifiability holds. This result relies on the
block-specific decoders being “sufficiently nonlinear” (Assumption 3.4.5) and requires only
very weak assumptions on the distribution of the ground-truth latent factors of variations.
In particular, these factors can be statistically dependent and their support can be (almost)
arbitrary.

36

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

Our second contribution is to show theoretically that additive decoders can generate images
never seen during training by recombining observed factors of variations in novel ways (Corol-
lary 3.4.8). To describe this ability, we coin the term “Cartesian-product extrapolation” (right
of Figure 3.1), which is similar to compositional generalization in terms of the latent factors
of variation. We believe the type of identifiability analysis laid out in this work to understand
“out-of-support” generation is novel and could be applied to other function classes or learning
algorithms such as DALLE-2 [Ramesh et al., 2022] and Stable Diffusion [Rombach et al.,
2022] to understand their apparent creativity and hopefully improve it.

Both latent variables identification and Cartesian-product extrapolation are validated experi-
mentally∗ on simulated data (Section 3.5). We observe that additivity is crucial for both by
comparing against a non-additive decoder which fails to disentangle and extrapolate.

3.2 Background & Literature review

Relation to Non-Linear ICA. In Section 1.2.3, we discussed several works utilizing
auxiliary information for solving Non-Linear ICA. In contrast, our approach does not rely
on additional information/weak supervision and obtain latent identification via constraints
on the mixing function. Our approach departs from the standard nonlinear ICA problem
along three axes: (i) we restrict the mixing function to be additive, (ii) the factors do not
have to be necessarily independent, and (iii) we can identify only the blocks zB as opposed
to each zi individually up to element-wise transformations, unless B = {{1}, ..., {dz}} (see
Section 3.4.1). Our results make mild assumptions about the latent distribution, which can
present statistical dependencies and have an almost arbitrarily shaped support. Additionally,
none of the prior works on Non-Linear ICA provide extrapolation guarantees as we do in
Section 3.4.2.

Object-centric representation learning (OCRL). Lin et al. [2020] classified OCRL
methods in two categories: scene mixture models [Greff et al., 2016, 2017, 2019, Locatello et al.,
2020c] & spatial-attention models [Eslami et al., 2016, Crawford and Pineau, 2019, Burgess
et al., 2019, Engelcke et al., 2020]. Additive decoders can be seen as an approximation
to the decoding architectures used in the former category, which typically consist of an
object-specific decoder g(obj) acting on object-specific latent blocks zB and “mixed” together

∗The code repository to reproduce the experiments: https://github.com/divyat09/additive_
decoder_extrapolation

37

https://github.com/divyat09/additive_decoder_extrapolation
https://github.com/divyat09/additive_decoder_extrapolation

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

via a masking mechanism m(B)(z) which selects which pixel belongs to which object.

g(z) =
∑
B∈B

m(B)(z)⊙ g(obj)(zB) , where m(B)
k (z) =

exp(ak(zB))∑
B′∈B exp(ak(zB′))

, (3.1)

where B is a partition of [dz] made of equal-size blocks B and a : R|B| → Rdx outputs
a score that is normalized via a softmax operation to obtain the masks m(B)(z). Many
of these works also present some mechanism to select dynamically how many objects are
present in the scene and thus have a variable-size representation z, an important technical
aspect we omit in our analysis. Empirically, training these decoders based on some form
of reconstruction objective, probabilistic or not, yields latent blocks zB that represent the
information of individual objects separately. We believe our work constitutes a step towards
providing a mathematically grounded explanation for why these approaches can perform this
form of disentanglement without supervision (Theorems 3.4.4 & 3.4.6). Many architectural
innovations in scene mixture models concern the encoder, but our analysis focuses solely
on the structure of the decoder g(z), which is a shared aspect across multiple methods.
Generalization capabilities of object-centric representations were studied empirically by
Dittadi et al. [2021] but did not cover Cartesian-product extrapolation (Corollary 3.4.8).

Differences with OCRL in practice. Although additive decoders make intuitive sense
for OCRL, they are not expressive enough to represent the “masked decoders” typically
used in practice (Equation (3.1)). The lack of additivity stems from the normalization in
the masks m(B)(z). We hypothesize that studying the simpler additive decoders might still
reveal interesting phenomena present in modern OCRL approaches due to their resemblance.
Another difference is that, in practice, the same object-specific decoder g(obj) is applied to
every latent block zB. Our theory allows for these functions to be different, but also applies
when functions are the same. Additionally, this parameter sharing across g(B) enables modern
methods to have a variable number of objects across samples, an important practical point
our theory does not cover.

Extrapolation. Du and Mordatch [2019] studied empirically how one can combine energy-
based models for what they call compositional generalization, which is similar to our notion of
Cartesian-product extrapolation, but suppose access to datasets in which only one latent factor
varies and do not provide any theory. Webb et al. [2020] studied extrapolation empirically
and proposed a novel benchmark which does not have an additive structure. Besserve et al.
[2021] proposed a theoretical framework in which out-of-distribution samples are obtained by
applying a transformation to a single hidden layer inside the decoder network. Krueger et al.
[2021] introduced a domain generalization method which is trained to be robust to tasks

38

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

falling outside the convex hull of training distributions. Extrapolation in text-conditioned
image generation was recently discussed by Wang et al. [2023].

3.3 Problem Setup

Assumption 3.3.1 (Data-generating process). The set of possible observations is given by a
lower dimensional manifold g(Ztest) embedded in Rdx where Ztest is an open set of Rdz and
g : Ztest → Rdx is a C2-diffeomorphism onto its image. We will refer to g as the ground-truth
decoder. At training time, the observations are i.i.d. samples given by x = g(z) where
z ∼ Z is distributed according to the probability measure Ptrain

Z with support Ztrain ⊂ Ztest.
Throughout, we assume that Ztrain is regularly closed (Definition D.1.1).

Intuitively, the ground-truth decoder g is effectively relating the “natural factors of
variations” z to the observations x in a one-to-one fashion. Mansouri et al. [2022] pointed out
that the injectivity of g is violated when images show two objects that are indistinguishable,
an important practical case that is not covered by our theory.

We emphasize the distinction between Ztrain, which corresponds to the observations seen
during training, and Ztest, which corresponds to the set of all possible images. The case where
Ztrain ̸= Ztest will be of particular interest when discussing extrapolation in Section 3.4.2.
The “regularly closed” condition on Ztrain is mild, as it is satisfied as soon as the distribution
of Z has a density w.r.t. the Lebesgue measure on Rdz . It is violated, for example, when Z is
a discrete random vector. Figure 3.2 illustrates this assumption with simple examples.

Objective. Our analysis is based on the objective of reconstructing the observations x by
learning an encoder f̂ : Rdx → Rdz and a decoder ĝ : Rdz → Rdx . Note that we assumed
implicitly that the dimensionality of the learned representation matches the dimensionality of
the ground-truth. We define the set of latent codes the encoder can output when evaluated
on the training distribution:

Ẑtrain := f̂(g(Ztrain)) (3.2)

We can characterize the indeterminacy in latent recovery with v : Ẑtrain → Ztrain when the
reconstruction tasks is solved exactly (Appendix B.3) as follows:

v := g−1 ◦ ĝ (3.3)

Before introducing our formal definition of additive decoders, we introduce the following
notation: Given a set Z ⊂ Rdz and a subset of indices B ⊂ [dz], let us define ZB to be the

39

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

projection of Z onto dimensions labelled by the index set B. More formally,

ZB := {zB | z ∈ Z} ⊆ R|B| . (3.4)

Intuitively, we will say that a decoder is additive when its output is the summation of the
outputs of “object-specific” decoders that depend only on each latent block zB. This captures
the idea that an image can be seen as the juxatoposition of multiple images which individually
correspond to objects in the scene or natural factors of variations (left of Figure 3.1).

Definition 3.3.2 (Additive functions). Let B be a partition of [dz]†. A function g : Z → Rdx

is said to be additive if there exist functions g(B) : ZB → Rdx for all B ∈ B such that

∀z ∈ Z, g(z) =
∑
B∈B

g(B)(zB) . (3.5)

This additivity property will be central to our analysis as it will be the driving force of
identifiability (Theorem 3.4.4 & 3.4.6) and Cartesian-product extrapolation (Corollary 3.4.8).

Remark 3.3.3. Suppose we have x = σ(
∑

B∈B g
(B)(zB)) where σ is a known bijective function.

For example, if σ(y) := exp(y) (component-wise), the decoder can be thought of as being
multiplicative. Our results still apply since we can simply transform the data doing x̃ := σ−1(x)

to recover the additive form x̃ =
∑

B∈B g
(B)(zB).

3.4 Identifiability Analysis of Additive Decoders

3.4.1 Latent Identification

We now study the identifiability of additive decoders and show how they can yield disentan-
glement. Our definition of disentanglement will rely on partition-respecting permutations :

Definition 3.4.1 (Partition-respecting permutations). Let B be a partition of {1, ..., dz}. A
permutation π over {1, ..., dz} respects B if, for all B ∈ B, π(B) ∈ B.

Essentially, a permutation that respects B is one which can permute blocks of B and
permute elements within a block, but cannot “mix” blocks together. We now introduce
B-disentanglement.

Definition 3.4.2 (B-disentanglement). A learned decoder ĝ : Rdz → Rdx is said to be B-
disentangled w.r.t. the ground-truth decoder g when g(Ztrain) = ĝ(Ẑtrain) and the mapping

†Without loss of generality, we assume that the partition B is contiguous, i.e. each B ∈ B can be written
as B = {i+ 1, i+ 2, . . . , i+ |B|}.

40

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

v := g−1 ◦ ĝ is a diffeomorphism from Ẑtrain to Ztrain satisfying the following property:
there exists a permutation π respecting B such that, for all B ∈ B, there exists a function
v̄π(B) : Ẑtrain

B → Ztrain
π(B) such that, for all z ∈ Ẑtrain, vπ(B)(z) = v̄π(B)(zB). In other words,

vπ(B)(z) depends only on zB.

Thus, B-disentanglement means that the blocks of latent dimensions zB are disentangled
from one another, but that variables within a given block might remain entangled. Note
that, unless the partition is B = {{1}, · · · , {dz}}, this corresponds to a weaker form of
disentanglement than what is typically seeked in nonlinear ICA, i.e. recovering each variable
individually. To illustrate B-disentanglement, imagine a scene consisting of two balls moving
around in 2D where the “ground-truth” representation is given by z = (x1, y1, x2, y2) where
zB1 = (x1, y1) and zB2 = (x2, y2) are the coordinates of each ball (here, B := {{1, 2}, {3, 4}}).
In that case, a learned representation is B-disentangled when the balls are disentangled from
one another. However, the basis in which the position of each ball is represented might differ
in both representations.

Our first result (Theorem 3.4.4) shows a weaker form of disentanglement we call local
B-disentanglement. This means the Jacobian matrix of v, Dv, has a “block-permutation”
structure everywhere (Appendix B.2).

Definition 3.4.3 (Local B-disentanglement). A learned decoder ĝ : Rdz → Rdx is said to be
locally B-disentangled w.r.t. the ground-truth decoder g when g(Ztrain) = ĝ(Ẑtrain) and
the mapping v := g−1 ◦ ĝ is a diffeomorphism from Ẑtrain to Ztrain satisfying the following
property: for all z ∈ Ẑtrain, there exists a permutation π respecting B such that, for all
B ∈ B, the columns of Dvπ(B)(z) ∈ R|B|×dz outside block B are zero.

We now state the main identifiability result of this work which provides conditions to
guarantee local disentanglement. We will then see how to go from local to global disentangle-
ment in the subsequent Theorem 3.4.6. For pedagogical reasons, we delay the formalization
of the sufficient nonlinearity Assumption 3.4.5 on which the result crucially relies.

Theorem 3.4.4 (Local disentanglement via additive decoders). Given the data generation
process (Assumption 3.3.1) and the optimal solution (f̂ , ĝ) under the reconstruction loss,
along with the extra assumptions stated below:

• Both true decoder g and learned ĝ are additive functions (Definition 3.3.2)

• Learned decoder ĝ is a C2-diffeomorphism, the learned encoder f̂ is continuous

• True deoder g is sufficiently nonlinear as formalized by Assumption 3.4.5

41

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

Then we have that ĝ is locally B-disentangled w.r.t. g (Definition 3.4.3) .

The proof can be found in Appendix D.1.2, which is inspired from Hyvärinen et al.
[2019]. The essential differences are that (i) they leverage the additivity of the conditional
log-density of z given an auxiliary variable u (i.e. conditional independence) instead of
the additivity of the decoder function g, (ii) we extend their proof techniques to allow for
“block” disentanglement, i.e. when B is not the trivial partition {{1}, . . . , {dz}}, (iii) the
asssumption “sufficient variability” of the prior p(z | u) of Hyvärinen et al. [2019] is replaced
by an analogous assumption of “sufficient nonlinearity” of the decoder g (Assumption 3.4.5),
and (iv) we consider much more general supports Ztrain which makes the jump from local to
global disentanglement less direct in our case.

The identifiability-expressivity trade-off. The level of granularity of the partition B
controls the trade-off between identifiability and expressivity: the finer the partition, the
tighter the identifiability guarantee but the less expressive is the function class. The optimal
level of granularity is going to dependent on the application at hand. Whether B could be
learned from data is left for future work.

Sufficient nonlinearity. The following assumption is key in proving Theorem 3.4.6, as it
requires that the ground-truth decoder is “sufficiently nonlinear”.

Assumption 3.4.5 (Sufficient nonlinearity of g). Let q := dz +
∑

B∈B
|B|(|B|+1)

2
. For all

z ∈ Ztrain, g is such that the following matrix has linearly independent columns (i.e. full
column-rank):

W (z) :=

[[
Dig

(B)(zB)
]
i∈B

[
D2

i,i′g
(B)(zB)

]
(i,i′)∈B2

≤

]
B∈B
∈ Rdx×q , (3.6)

where B2
≤ := B2 ∩ {(i, i′) | i′ ≤ i}. Note this implies dx ≥ q.

This is reminiscent of the “sufficient variability” assumptions found in the nonlinear ICA
litterature, which usually concerns the distribution of the latent variable z as opposed to the
decoder f [Hyvärinen and Morioka, 2016, 2017, Hyvärinen et al., 2019, Khemakhem et al.,
2020b,c, Lachapelle et al., 2022b, Zheng et al., 2022]. We clarify this link in Appendix D.1.3
and provide intuitions why sufficient nonlinearity can be satisfied when dx ≫ dz.

From local to global disentanglement The following result provides additional
assumptions to guarantee global disentanglement (Definition 3.4.2) as opposed to only local
disentanglement (Definition 3.4.3). See Appendix D.1.4 for its proof.

42

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

Theorem 3.4.6 (Global disentanglement via additive decoders). Suppose that all the as-
sumptions of Theorem 3.4.4 hold, along with the extra assumptions stated below:

• Support of the true latents Ztrain is path-connected (Definition D.1.3)

• Block-specific decoders g(B) and ĝ(B) are injective for all blocks B ∈ B

Then for optimal solution (f̂ , ĝ) under the reconstruction loss we have ĝ is (globally) B-
disentangled w.r.t. g (Definition 3.4.2). Further, for all B ∈ B, we have the following:

ĝ(B)(zB) = g(π(B))(v̄π(B)(zB)) + c(B), for all zB ∈ Ẑtrain
B , (3.7)

where the functions v̄π(B) are from Definition 3.4.2 and the vectors c(B) ∈ Rdx are constants
such that

∑
B∈B c

(B) = 0. We also have that the functions v̄π(B) : Ẑtrain
B → Ztrain

π(B) are
C2-diffeomorphisms and have the following form:

v̄π(B)(zB) = (gπ(B))−1(ĝ(B)(zB)− c(B)), for all zB ∈ Ẑtrain
B . (3.8)

R
eg

ul
ar

ly

cl
os

ed
N

ot
 re

gu
la

rly

cl
os

ed

Path-connected Not path-connected

Figure 3.2: Illustrating regularly
closed sets and path-connected sets.
Theorem 3.4.6 requires Ztrain to sat-
isfy both properties.

Equation (3.7) in the above result shows that each
block-specific learned decoder ĝ(B) is “imitating” a
block-specific ground-truth decoder gπ(B). Indeed, the
“object-specific” image outputted by the decoder ĝ(B)

evaluated at some zB ∈ Ẑtrain
B is the same as the im-

age outputted by g(B) evaluated at v(zB) ∈ Ztrain
B , up

to an additive constant vector c(B). These constants
cancel each other out when taking the sum of the block-
specific decoders. Equation (3.8) provides an explicit
form for the function v̄π(B), which is essentially the
learned block-specific decoder composed with the in-
verse of the ground-truth block-specific decoder. Note
that assuming that the support of Ptrain

z , Ztrain, is path-connected (see Definition D.1.3 in
appendix) is crucial to go from local to global disentanglement since it prevents the permu-
tation π of Definition 3.4.3 from changing between two disconnected regions of Ẑtrain. See
Figure 3.2 for an illustration. In Appendix D.1.5, we discuss the additional assumption that
each g(B) must be injective and show that, in general, it is not equivalent to the assumption
that

∑
B∈B g

(B) is injective.

43

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

3.4.2 Cartesian-product extrapolation

In this section, we show how a learned additive decoder can be used to generate images x
that are “out of support” in the sense that x ̸∈ g(Ztrain), but that are still on the manifold of
“reasonable” images, i.e. x ∈ g(Ztest). To characterize the set of images the learned decoder
can generate, we will rely on the notion of “cartesian-product extension”, which we define
next.

Definition 3.4.7 (Cartesian-product extension). Given a set Z ⊆ Rdz and partition B of
[dz], we define the Cartesian-product extension of Z as

CPEB(Z) :=
∏
B∈B

ZB ,where ZB := {zB | z ∈ Z}.

Let us define v̄ : CPEB(Ẑtrain)→ CPEB(Ztrain) to be the natural extension of the function
v : Ẑtrain → Ztrain. More explicitly, v̄ is the “concatenation” of the functions v̄B given in
Definition 3.4.2:

v̄(z)⊤ := [v̄B1(zπ−1(B1))
⊤ · · · v̄Bℓ

(zπ−1(Bℓ))
⊤] , (3.9)

where ℓ is the number of blocks in B. This map is a diffeomorphism because each v̄π(B) is a
diffeomorphism from Ẑtrain

B to Ztrain
π(B) by Theorem 3.4.6. We already know that ĝ(z) = g ◦ v̄(z)

for all z ∈ Ẑtrain. The following result shows that this equality holds in fact on the larger
set CPEB(Ẑtrain), the Cartesian-product extension of Ẑtrain. See right of Figure 3.1 for an
illustration of the following corollary.

Corollary 3.4.8 (Cartesian-product extrapolation). Suppose all the assumptions of Theo-
rem 3.4.6 hold. Then we have the following:∑

B∈B

ĝ(B)(zB) =
∑
B∈B

g(π(B))(v̄π(B)(zB)) ∀z ∈ CPEB(Ẑtrain) (3.10)

Furthermore, if CPEB(Ztrain) ⊆ Ztest, then ĝ(CPEB(Ẑtrain)) ⊆ g(Ztest).

[]

[]

[]

[]

Figure 3.3: Illustration of Defini-
tion 3.4.7.

Equation (3.10) tells us that the learned decoder ĝ
“imitates” the ground-truth g not just over Ẑtrain, but
also over its Cartesian-product extension, hence we
can generate observations never seen during training.
Intuitively, cartesian-product extrapolation is akin
to compositional generalization since the decoder is

44

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

able to generate images corresponding to the novel
combinations of the latent factors by training on a set of limited combinations.

Disentanglement is not enough for extrapolation. To the best of our knowledge,
Corollary 3.4.8 is the first result that formalizes how disentanglement can induce extrapolation.
It illustrates that disentanglement alone is not sufficient to enable extrapolation and that
one needs to restrict the hypothesis class of decoders in some way. Indeed, given a learned
decoder ĝ that is disentangled w.r.t. g on the training support Ztrain, one cannot guarantee
both decoders will “agree” outside the training domain without further restricting ĝ and g.
This work has focused on “additivity”, but we believe other restrictios could help as well.

3.5 Experiments

We now present empirical validations of the theoretical results presented earlier. To achieve
this, we compare the ability of additive and non-additive decoders to both identify ground-
truth latent factors (Theorems 3.4.4 & 3.4.6) and extrapolate (Corollary 3.4.8) when trained
to solve the reconstruction task on simple images (64× 64× 3) consisting of two balls moving
in space [Ahuja et al., 2022]. See Appendix D.2.1 for training details. We consider two
datasets: one where the two ball positions can only vary along the y-axis (ScalarLatents)
and one where the positions can vary along both the x and y axes (BlockLatents).

ScalarLatents: The ground-truth latent vector z ∈ R2 is such that z1 and z2 corresponds
to the height (y-coordinate) of the first and second ball, respectively. Thus the partition
is simply B = {{1}, {2}}. This simple setting is interesting since the low dimensionality
of the latent space (dz = 2) allows for exhaustive visualizations like Figure 3.4. To study
Cartesian-product extrapolation, we sample z from a distribution with a L-shaped support
given by Ztrain := [0, 1]× [0, 1] \ [0.5, 1]× [0.5, 1], so that the training set does not contain
images where both balls appear in the upper half of the image (see Appendix D.2.2).

BlockLatents: The ground-truth latent vector z ∈ R4 is such that z{1,2} and z{3,4} corre-
spond to the x, y position of the first and second ball, respectively (the partition is simply
B = {{1, 2}, {3, 4}}, i.e. each object has two latent factors). Thus, this more challenging
setting illustrates “block-disentanglement”. The latent z is sampled uniformly from the
hypercube [0, 1]4 but the images presenting occlusion (when a ball is behind another) are
rejected from the dataset. We also present an additional version of this dataset where we
sample from the hypercube [0, 1]4 with dependencies. See Appendix D.2.2 for more details.

Evaluation metrics: To evaluate disentanglement, we compute a matrix of scores (sB,B′) ∈
Rℓ×ℓ where ℓ is the number of blocks in B and sB,B′ is a score measuring how well we

45

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

ScalarLatents BlockLatents BlockLatents
(independent z) (dependent z)

Decoders RMSE LMSSpear RMSEOOS LMSOOS
Spear RMSE LMSTree RMSE LMSTree

Non-add. .06 ±.002 70.6±5.21 .18±.012 73.7±4.64 .02±.001 53.9±7.58 .02±.001 78.1±2.92

Additive .06±.002 91.5±3.57 .11±.018 89.5±5.02 .03±.012 92.2±4.91 .01±.002 99.9±0.02

Table 3.1: Reporting reconstruction mean squared error (RMSE ↓) and the Latent Matching
Score (LMS ↑) for the three datasets considered: ScalarLatents and BlockLatents with
independent and dependent latents. Runs were repeated with 10 random initializations.
RMSEOOS and LMSOOS

Spear are the same metric but evaluated out of support (see Appendix D.2.3
for details). While the standard error is high, the differences are still clear as can be seen in
their box plot version in Appendix D.2.4.

can predict the ground-truth block zB from the learned latent block ẑB′ = f̂B′(x) out-
putted by the encoder. The final Latent Matching Score (LMS) is computed as LMS =

argmaxπ∈SB
1
ℓ

∑
B∈B sB,π(B), where SB is the set of permutations respecting B (Defini-

tion 3.4.1). When B := {{1}, . . . , {dz}} and the score used is the absolute value of the
correlation, LMS is simply the mean correlation coefficient (MCC) (1.13). Because our
theory guarantees recovery of the latents only up to invertible and potentially nonlinear
transformations, we use the Spearman correlation, which can capture nonlinear relationships
unlike the Pearson correlation. We denote this score by LMSSpear and will use it in the
dataset ScalarLatents. For the BlockLatents dataset, we cannot use Spearman correlation
(because zB are two dimensional). Instead, we take the score sB,B′ to be the R2 score of a
regression tree. We denote this score by LMStree. There are subtleties to take care of when
one wants to evaluate LMStree on a non-additive model due to the fact that the learned
representation does not have a natural partition B. We must thus search over partitions. We
discuss this and provide further details on the metrics in Appendix D.2.3.

3.5.1 Results

Additivity is important for disentanglement. Table 3.1 shows that the additive decoder
obtains a much higher LMSSpear & LMSTree than its non-additive counterpart on all three
datasets considered, even if both decoders have very small reconstruction errors. This
is corroborated by the visualizations of Figures 3.4 & 3.5. Appendix D.2.5 additionally
shows object-specific reconstructions for the BlockLatents dataset. We emphasize that
disentanglement is possible even when the latent factors are dependent (or causally related),
as shown on the ScalarLatents dataset (L-shaped support implies dependencies) and on
the BlockLatents dataset with dependencies (Table 3.1). Note that prior works have
relied on interventions [Ahuja et al., 2023, 2022, Brehmer et al., 2022] or Cartesian-product

46

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

(a) Additive decoder (b) Non-additive decoder

Figure 3.4: Figure (a) shows latent representation outputted by the encoder f̂(x) over the
training dataset, and the corresponding reconstructed images of the additive decoder with
median LMSSpear among runs performed on the ScalarLatents dataset. Figure (b) shows
the same thing for the non-additive decoder. The color gradient corresponds to the value
of one of the ground-truth factor, the red dots correspond to factors used to generate the
images and the yellow dashed square highlights extrapolated images.

0.25 0.50 0.75
Ball 1 moving along x axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along x axis

2

0

2

0.25 0.50 0.75
Ball 1 moving along y axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along y axis

2

0

2

Latent 1 Latent 2 Latent 3 Latent 4

(a) Additive Decoder

0.25 0.50 0.75
Ball 1 moving along x axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along x axis

2

0

2

0.25 0.50 0.75
Ball 1 moving along y axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along y axis

2

0

2

Latent 1 Latent 2 Latent 3 Latent 4

(b) Non-Additive Decoder

Figure 3.5: Latent responses for the case of independent latents in the BlockLatent dataset.
In each plot, we report the latent factors predicted from multiple images where one ball
moves along only one axis at a time. For the additive case, at most two latents change, while
more than two latents change for the non-additive case. See Appendix D.2.5 for details.

supports Wang and Jordan [2022], Roth et al. [2023] to deal with dependencies.

Additivity is important for Cartesian-product extrapolation. Figure 3.4 illustrates
that the additive decoder can generate images that are outside the training domain (both
balls in upper half of the image) while its non-additive counterpart cannot. Furthermore,
Table 3.1 also corroborates this showing that the “out-of-support" (OOS) reconstruction MSE
and LMSSpear (evaluated only on the samples never seen during training) are significantly
better for the additive than for the non-additive decoder.

Importance of connected support. Theorem 3.4.6 required that the support of the
latent factors, Ztrain, was path-connected. Appendix D.2.6 shows experiments where this
assumption is violated, which yields lower LMSSpear for the additive decoder, thus highlighting
the importance of this assumption.

47

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

3.6 Conclusion

We provided an in-depth identifiability analysis of additive decoders, which bears resemblance
to decoders used in OCRL, and introduced a novel theoretical framework showing how this
architecture can generate reasonable images never seen during training via “Cartesian-product
extrapolation”. We validated these results empirically and confirmed that additivity is indeed
crucial. By studying rigorously how disentanglement can induce extrapolation, our work
highlighted the necessity of restricting the decoder to extrapolate and set the stage for future
works to explore disentanglement and extrapolation in other function classes. We postulate
that the type of identifiability analysis introduced in this work has the potential of expanding
our understanding of creativity in generative models, ultimately resulting in representations
that generalize better.

A major limitation with additive decoders is that they cannot model occlusion. Occlusion
occurs when an object is partially hidden behind another one. Consider the example of two
images with each consisting of two objects, A and B. In both images, the position of object
A is the same and in exactly one of the images, object B partially occludes object A. Since
the position of object A did not change, its corresponding latent block zA is also unchanged
between both images. However, the pixels occupied by object A do change between both
images because of occlusion. The issue is that, because of additivity, zA and zB cannot interact
to make some pixels that belonged to object A “disappear” to be replaced by pixels of object
B. In practice, object-centric representation learning methods rely on a masking mechanism
which allows interactions between zA and zB (E.q. 3.1). Hence, future work involves extending
our results for provable latent identification & extrapolation for the case of masked addition
such that the case with object occlusion is handled. A concurrent work by Wiedemer et al.
[2024] establishes provable extrapolation for a more general class of functions that can handle
masked addition, however, they assume access to the true latent variables and their analysis
does not show how to achieve provable disentanglement along with compositionality for the
proposed class of mixing functions. Hence, it is still an important open problem to prove
such results for a more general class of mixing functions than additive decoders.

Further, our work provides guarantees only for extrapolation of the decoder but not for
the extrapolation of the encoder. The experiments with ScalarLatents Figure 3.4a show
generation of novel images by traversing the learned latent space, and we never explored
whether the latent variables generated by the encoder for novel images would be meaningful.
An important future step would be to extend our analysis and method for guarantees on
encoder extrapolation as well. Recent work by Wiedemer et al. [2023] proposes encoder
consistency loss for the same, and it would be interesting to develop further on this problem.

48

Chapter 4

Future Work: Compositional

Generalization with Additive Energy

Models

This chapter is based on my ongoing project with Kartik Ahuja, Ioannis Mitliagkas, Mo-
hammad Pezeshki, and Pascal Vincent. I am leading the project on both theoretical and
empirical fronts. The project emerged from several brainstorming sessions between Pascal
Vincent and Divyat Mahajan, where Pascal advocated for the use of additive energy models.

From the outset, Pascal Vincent and Divyat Mahajan worked on the proofs for the
extrapolation of the generative case of additive energy models, with significant contributions
from Kartik Ahuja and Ioannis Mitliagkas as the project progressed. Pascal Vincent worked
on the exploration of the discriminative case of additive energy models, along with inputs
from Divyat Mahajan. Kartik Ahuja introduced the idea of deriving probabilistic bounds for
extrapolation with randomly observed training groups, which was further analyzed in detail
by Ioannis Mitliagkas and Divyat Mahajan.

The empirical analysis of the proposed approach has been led by Divyat Mahajan, under
guidance from the other collaborators. The writing has been primarily led by Divyat Mahajan,
with contributions from Kartik Ahuja on the theoretical results.

4.1 Introduction

In the previous chapter, we looked at additive decoders and established guarantees for latent
identification and cartesian-product extrapolation with them. An important aspect from
the analysis of additive decoders is that we can guarantee the learned decoder would show

49

Future Work: Compositional Generalization with Additive Energy Models

compositional generalization, i.e, it can generate images corresponding to novel combinations
of learned factors. To understand this result better, suppose that we observed the factors of
variation or obtained them via some disentangled representation learning approach. Now if
we want to build compositional models that can generalize to novel combinations of these
factors, then one theoretically sound approach is to learn an additive model in terms of these
factors. However, additive decoders have a limited expressivity as they do not allow for any
interaction between factors, and it is important to focus on more expressive class of functions
for which we can establish extrapolation guarantees.

In this work, we introduce additive energy models and study their compositional generaliza-
tion abilities under the assumption that we know the latent factors of variation (z). This
is done to simplify the setup and focus solely on compositional generalization first with
observed factors. Additive energy models (4.3) formulate the conditional data distribution as
boltzmann distribution, p(x|z) = 1

B(z)
exp(−E(x, z)), where the energy function is additive in

terms of the factors, E(x, z) =
∑

iEi(x, zi). Hence, unlike additive decoders, we have a more
flexible probabilistic mapping from factors (z) to observations (x), which supports interaction
between factors via the partition function B(z).

Another main objective of our analysis is to establish guarantees for compositional gener-
alization with additive energy models for the case of discrete factors. Extrapolation with
discrete factors was not studied in additive decoders since provable disentanglement was the
primary aim for them, which makes it difficult to use discrete factors. Hence, we first start
with Section 4.2 that discusses the challenges with discrete extrapolation of additive functions
in detail, and provides novel results regarding the sufficient conditions (Corollary 4.2.4, Corol-
lary 4.2.6) on the support of discrete factors for compositional generalization. This section
can be interpreted as extending the cartesian-product extrapolation result with additive
decoders to discrete factors.

Section 4.3 shifts the focus to additive energy models, and provides the theoretical results
(Theorem 4.3.2) for provable extrapolation with them. Since estimation of partition function
can be challenging in energy based models, we propose a novel approach inspired from energy
based models that avoids estimating the partition function and yet can extrapolate to novel
combinations (Theorem 4.3.5).

Finally, we evaluate the proposed method for the task of group-robust classification/subpopulation
shifts [Yang et al., 2023] in Section 4.4. Our preliminary results are promising, and show that
additive energy based methods achieve good performance for compositional generalization in
high-dimensional image datasets.

50

Future Work: Compositional Generalization with Additive Energy Models

4.2 Characterizing Extrapolation for Discrete

Factors

Let z ∈ Rdz denote the inputs (factors) and consider additive functions g over them (akin to
additive decoders),

g(z) =
dz∑
i=1

gi(zi)

Lets denote the training support of input factors by Ztrain, and define the cartesian-product
extension of training support as CPE(Ztrain) := Ztrain

1 ×Ztrain
2 × · · · Ztrain

dz
. Lets denote the

model trained with the inductive bias of additivity as ĝ(z) =
∑dz

i=1 ĝi(zi) Then our task of
cartesian-product extrapolation is defined as follows.

Definition 4.2.1 (Cartesian-Product Extrapolation). If the learned additive model (ĝ) and
the true additive model (g) match on training distribution, ĝ(z) = g(z) ∀z ∈ Ztrain, then their
predictions also match on the cartesian-product of the training support, ĝ(z) = g(z) ∀z ∈
CPE(Ztrain).

Further, we assume Ztest ⊆ CPE(Ztrain), therefore ĝ(z) = g(z) ∀z ∈ Ztest.

Note that as per the above setup, we have that the support of any component Zi is the
same across the training distribution and its cartesian-product extension, summarized below.

Ztrain
i = CPE(Ztrain)i ∀i ∈ [1, · · · , dz] (4.1)

Lets first analyze the case of continuous factors, where we can show the following.

ĝ(z) = g(z) ∀z ∈ Ztrain

=⇒
∑
i

ĝi(zi) =
∑
i

gi(zi) ∀z ∈ Ztrain

=⇒ ∂ĝi(zi)

∂zi
=
∂gi(zi)

∂zi
∀zi ∈ Ztrain

i

=⇒ ĝi(zi) = gi(zi) + Ci ∀zi ∈ Ztrain
i where

∑
i

Ci = 0.

Its important to note that the last equality follows under the assumption that the support of
z is connected, otherwise Ci could be function of z (check Appendix B.2 for more details).
Using equation (4.1), we have the following:

ĝi(zi) = gi(zi) + Ci ∀zi ∈ Ztrain
i ⇐⇒ ĝi(zi) = gi(zi) + Ci ∀zi ∈ CPE(Ztrain)i

51

Future Work: Compositional Generalization with Additive Energy Models

With the above equality, we can easily show extrapolation to novel points from CPE(Ztrain).

ĝ(z) =
∑
i

ĝi(zi) ∀z ∈ CPE(Ztrain)

=
∑
i

gi(zi) + Ci ∀z ∈ CPE(Ztrain)

= g(z) ∀z ∈ Ztrain (because
∑
i

Ci = 0)

The challenge with discrete factors. Note that if the support of z was not
(path) connected then Ci would be a function of z as well and we cannot achieve extrapolation.
This precisely highlights the challenge with discrete factors as their support is not connected!
In general, for a discrete latent variable we only have the following.

ĝi(zi) = gi(zi) + Ci(zi) s.t.
∑
i

Ci(zi) = 0 ∀zi ∈ Ztrain (4.2)

The implication of this for novel points z ∈ CPE(Ztrain) is as follows:

ĝ(z) =
∑
i

ĝi(zi) ∀z ∈ CPE(Ztrain)

=
∑
i

gi(zi) + Ci(zi) ∀z ∈ CPE(Ztrain)

= g(z) +
∑
i

Ci(zi) ∀z ∈ CPE(Ztrain)

Hence, the model is wrong in its predictions by the offset
∑

iCi(zi) which is not necessarily
zero for novel factors.

4.2.1 Path Connected Support for Discrete Factors

We now develop the analogue of path connected support for discrete factors that would enable
cartesian-product extrapolation. Lets construct the following graph based on the training
support of discrete factors Ztrain.

Definition 4.2.2. Given Ztrain, construct an undirected graph G = (V,E) where each factor
is a node in the graph, z ∈ V ∀ z ∈ Ztrain. Further, (zi, zj) ∈ E if H(zi, zj) = 1, where H
denotes the hamming distance. Hence, there exist an edge between zi, zj ∈ V if zi and zj

only differ in exactly one component.

To understand the importance of above graph, consider two factors (z1, z2) that have
an edge between them, (z1, z2) ∈ E. Without loss of generality assume they only differ at

52

Future Work: Compositional Generalization with Additive Energy Models

the kth component, hence, Ci(z
1
i) = Ci(z

2
i) ∀i ̸= k. Following (4.2), we have

∑
iCi(z

1
i) =∑

iCi(z
2
i) = 0, which we simplify as follows.∑

i

Ci(z
1
i) =

∑
i

Ci(z
2
i)

=⇒
∑
i ̸=k

Ci(z
1
i) + Ck(z

1
k) =

∑
i ̸=k

Ci(z
2
i) + Ck(z

2
k)

=⇒ Ck(z
1
k) = Ck(z

2
k)

Therefore, if two factors z1, z2 are connected by an edge then all the offsets Ci have the same
value for them. We can extend this argument via induction to have the following claim.

Proposition 4.2.3. If two factors zi, zj ∈ Ztrain are connected via a path in the graph G,
then we have Ck(z

i
k) = Ck(z

j
k) ∀k ∈ dz.

A corollary from this is we assume that all factors z ∈ Ztrain are connected via path
in G, then offsets Ck are constant over the entire support, akin to the case of continuous
factors with path-connected support! Since offsets don’t vary across the factors and we know∑

iCi = 0, therefore we generalize to novel points as well.

Corollary 4.2.4. Assume Ztrain is "path-connected", i.e, all factors are connected to each
other via a path in the graph G. Then we achieve cartesian-product extrapolation (Defini-
tion 4.2.1) with additive functions.

4.2.2 Affine Hull Extrapolation

We now discuss an alternate characterization of extrapolation with discrete factors that
relates novel factors as an affine combination of observed factors in the training data. The
motivation for this alternative characterization is that it would help us avoid computing the
partition function with energy based models (which is a challenging task) while allowing
extrapolation to the novel points. We understand this might not be very clear as of now, so
the reader may interpret this as another way to analyze discrete extrapolation.

Consider an example of 2 dimensional binary factors, z = (z1, z2) where zi ∈ {0, 1}, such
that {(0, 0), (0, 1), (1, 0)} ∈ Ztrain. Then for the novel factor z = (1, 1), we have ĝ(1, 1) =
ĝ(1, 0)− ĝ(0, 0)+ ĝ(0, 1). Therefore, if we estimate the function perfectly for factors in training
dataset, then we can extrapolate as prediction for the novel factor is an affine combination of
the prediction for training factors.

In other words, perfect estimation on the training support should imply extrapolation to

53

Future Work: Compositional Generalization with Additive Energy Models

the affine hull extension of the training support (Aff(Ztrain)). To formally define Aff(Ztrain),
lets consider discrete factors where each component zi can take m different possible values.
Let τ(zi) ∈ Rm denote the 1-hot transformation of zi, and denote their concatenation by
τ(z) = [τ(z1), · · · , τ(zdz)] ∈ Rdz×m. Now we can define the affine hull extension as follows:

Definition 4.2.5 (Affine Hull Extension of Training Support). All factors z′ ∈ Aff(Ztrain)

must satisfy the following constraint: τ(z′) =
∑

z∈Ztrain αzτ(z) where
∑

z∈Ztrain αz = 1.

Hence, the one-hot concatenation vector for z′ ∈ Aff(Ztrain) can be expressed as an affine
combination of one-hot concatenation vectors of training factors. Note that we can evaluate
additive function g for point z′ ∈ Aff(Ztrain) as follows (proof in Appendix E.1):

ĝ(z′) =
∑

z∈Ztrain

αzĝ(z) where τ(z′) =
∑

z∈Ztrain

αzτ(z)

Hence, function evaluation for factors in z′ ∈ Aff(Ztrain) is an affine combination of the
function evaluation for factors in training data. Therefore, we can state the following
corollary, that additive functions can perform affine hull extrapolation.

Corollary 4.2.6. If the learned additive model (ĝ) and the true additive model (g) match on
training distribution, ĝ(z) = g(z) ∀z ∈ Ztrain, then their predictions also match on the affine
hull extension of the training support, ĝ(z) = g(z) for z ∈ Aff(Ztrain).

Relationship between Aff(Ztrain) and CPE(Ztrain). While these two extensions of
the training support might look very different, we believe that Aff(Ztrain) = CPE(Ztrain)

though we don’t have a formal proof yet. For example, consider the 2-d binary factor case
(z1, z2) and assume Ztrain = {(0, 0, (0, 1), (1, 0))}. Then the novel factor (1, 1) ∈ Aff(Ztrain) as
τ(1, 1) = τ(1, 0)− τ(0, 0) + τ(0, 1), hence Aff(Ztrain) = CPE(Ztrain).

Another way to analyze the relationship between them is to answer the following question;
how many factors do we need to observe during training so that Aff(Ztrain) captures the full
cartesian-product space, i.e.,×dz

i=1
[m] (assuming each component has m possible values)?

For the case of 2-dimensional factors (dz = 2), we do a probabilistic analysis where we start
sampling factors uniformly at random (this can be relaxed to more general distributions) and
show that we need O(m logm) factors for Aff(Ztrain) to contain the entire cartesian-product
space with a high probability (proof in Appendix E.2).

Theorem 4.2.7. Assume 2-d factors, i.e., dz = 2. If the number of sampled factors is more
than 8c ∗m log(m), then Aff(Ztrain) = [m]× [m] with probability ≥ 1− 1

c
.

54

Future Work: Compositional Generalization with Additive Energy Models

Hence, the above theorem states that we need O(m logm) factors during training to
extrapolate to all the m2 factors. The proof technique doesn’t work for higher dimensional
factors (dz > 2), however, we have performed simulations that hint the general bound will be
of the form O(dz ∗m logm), which is remarkably small given the complete space of factors
grows exponentially in dz. We hope to show this bound theoretically as well in future work.

4.3 Extrapolation via Additive Energy Models

We now study the question of extrapolation with discrete factors for additive energy models.
Additive energy models makes a mild yet realistic assumption on p(x|z); they assume that
the associated energy function E(x, z) is additive in terms of factors z, i.e., E(x, z) =∑dz

i=1Ei(x, zi). We use the following equivalent notation for additive energy E(x, z) as
⟨1,E(x, z)⟩ where E(x, z) = [E1(x, z1), · · · , Edz(x, zdz)] as shown below.

p(x|z) = 1

B(z)

[
exp

(
− ⟨1,E(x, z)⟩

)]
(4.3)

where B(z) is the partition function B(z) =
∫
exp(−⟨1,E(x, z)⟩)dx.

Unlike additive functions in the previous section, additive energy models are more flexible as
the observations are modeled in a probabilistic manner, along with interaction terms between
latent factors modeled by B(z). The simpler structure of additive functions allowed us to
show extrapolation guarantees with them (Corollary 4.2.4, Corollary 4.2.6), and our goal now
is to establish similar guarantees with additive energy models.

We first state an assumption that will be useful for all our proofs.

Assumption 4.3.1 (Invariant Support of Data). The support of the distribution p(x|z) is
independent of z, i.e, the range of values allowed for x are the same given any factor z.

This is a strong but necessary assumption because we are seeking extrapolation to novel
factors z′ ∈ Aff(Ztrain), and if there is a shift in the support of p(x|z′), i.e., ∃ x′ such that
p(x′|z) = 0 ∀z ∈ Ztrain, then intuitively we cannot constrain p(x′|z′) as a function of the
training data. We now state our result for affine hull extrapolation with learned additive
energy models p̂(x|z) = 1

B̂(z)
[exp(−⟨1, Ê(x, z)⟩)], with the proof in Appendix E.3.

Theorem 4.3.2. [Affine Hull Extrapolation with Additive Energy Models] Under Assump-
tion 4.3.1, if the learned additive energy model p̂(x|z) matches the true additive energy model
p(x|z) on training data, i.e., p̂(x|z) = p(x|z) ∀z ∈ Ztrain, then we would have affine hull
extrapolation, p̂(x|z) = p(x|z) ∀z ∈ Aff(Ztrain).

55

Future Work: Compositional Generalization with Additive Energy Models

4.3.1 Extrapolation for Classification Problems

Note that we did not explicitly discuss how to perform density estimation with energy based
models p̂(x|z), but in general it is a hard task that involves computing the partition function
B(z) =

∫
exp(−⟨1,E(x, z)⟩)dx. We have not worked further on methods and experiments

to justify Theorem 4.3.2 for density estimation with additive energy models, but we do
believe its an important future work. The current focus of the project is on extrapolation in
classification (discriminative) tasks (p(z|x)) with additive energy models, where we provide
novel techniques to bypass computation of the partition function.

Definition 4.3.3 (Compositional Classification Task). We samples factors z from the prior
distribution p(z), and sample data from the conditional distribution p(x|z) given by the
additive energy model (4.3) that satisfies the invariant support assumption (4.3.1). The
learner has access to samples (x, z) where z ∈ Ztrain, and the objective is to correctly model
p(z|x) for all z ∈ Aff(Ztrain). Further, we assume that the learner knows the true prior
distribution p(z).

Note that the above classification task can be solved using the route of generative (bayesian)
classification, i.e, the learner models p̂(x|z) as an additive energy model and extrapolates it
using Theorem 4.3.2. Then we can accurately estimate p(z|x) over the affine-hull extension
Aff(Ztrain) as p̂(z|x) = Softmax(log p̂(x|z) + log p(z)), which is dervied using bayes rule as
follows:

p̂(z|x) = p̂(x|z)p(z)
p̂(x)

=
p̂(x|z)p(z)∫
p̂(x|z)p(z)dx

= Softmax(log p̂(x|z) + log p(z))

We write this formally for convenience of the reader.

Corollary 4.3.4. Given the data generation process in Definition 4.3.3, and the estimator
p̂(z|x) = Softmax(log p̂(x|z) + log p(z)) where p̂(x|z) corresponds to learned additive energy

model, i.e, p̂(x|z) = 1

B̂(z)
[exp(−⟨1, Ê(x, z)⟩)]. Then the learner p̂(z|x) can solve the com-

positional classification task, i.e, p(z|x) = p̂(z|x) ∀z ∈ Ztrain implies p(z|x) = p̂(z|x) ∀z ∈
Aff(Ztrain).

But as we mentioned before, estimating p̂(x|z) with additive energy models would require
us to solve the difficult task of estimating partition function B(z). Instead, we propose the
following estimator for p̂(z|x), which is inspired from additive energy model but does not
restrict the interaction term between factors to be a partition function.

p̂(z|x) = Softmax
(
− ⟨1, Ê(x, z)⟩ − log M̂(z) + log p(z)

)
(4.4)

56

Future Work: Compositional Generalization with Additive Energy Models

where M̂(z) is a free parameter which is not related to energy E(x, z) unlike partition
functions. Note that even if p̂(z|x) = p(z|x) ∀z ∈ Ztrain, we still won’t extrapolate to
Aff(Ztrain) as M̂(z) is free to choose any values for z ∈ Aff(Ztrain)/Ztrain, which wouldn’t
happen if M̂(z) was constrained to be the partition function (Corollary 4.3.4).

However, we propose the following procedure to extrapolate M̂(z) for novel factors z ∈
Aff(Ztrain). Define Q̂(z) as a function of Ê(x, z) and M̂(z) as follows,

Q̂(z) = Ex∼ptrain(x)

[
exp

(
− ⟨1, Ê(x, z)⟩

)
∑

z̃∈Ztrain exp
(
− ⟨1, Ê(x, z̃)⟩ − log M̂(z̃) + log p(z̃)

)]

The idea is to replace M̂(z) by Q̂(z) in the estimator (4.4) for extrapolating to novel
points z ∈ Aff(Ztrain). More formally, define the estimator p̃(z|x), which is a function of
Ê(x, z) and Q̂(z) as follows:

p̃(z|x) = Softmax
(
− ⟨1, Ê(x, z)⟩ − log Q̂(z) + log p(z)

)
(4.5)

Then we can solve compositional classification using the estimator p̃(z|x).

Theorem 4.3.5. Consider the data generation process in Definition 4.3.3 and the proposed
estimator p̂(z|x) (4.4). If p̂(z|x) = p(z|x) ∀z ∈ Ztrain, then we can solve the compositional
classification task with p̃(z|x) (4.5), i.e., p̃(z|x) = p(z|x) ∀z ∈ Aff(Ztrain).

The proof for the above theorem can be found in Appendix E.4. Hence, even though the
estimator p̂(z|x) cannot solve the compositional classification task, its extension p̃(z|x) can
achieve the desired objective!

4.4 Experiments

We test our additive energy framework for group robust classification/subpopulation shifts [Yang
et al., 2023], where the the factors (groups) z consist of a class label y and a spurious attribute
a, i.e, z = (y, a) where y and a are correlated. The goal is to predict the class labels y from
observations x, under the assumption that the distribution of factors changes from training
to test, ptrain(z) ̸= ptest(z). For example, consider the Waterbirds dataset [Wah et al., 2011],
where the class label y is binary (land bird vs water bird) and the attribute a is binary (land
background vs water background) as well. In the training dataset, the land birds mostly
occur on land background and the waterbirds mostly occur on water background. While this
distribution changes at test time, hence the classifier using spurious correlation between y

57

Future Work: Compositional Generalization with Additive Energy Models

and a would fail to generalize.

In our setup, we create an extreme version of sub-population shift problem where the learner
does not have access to any samples from one of the four groups during training in the
Waterbirds dataset, while all the groups are present at test time. This setup reflects the
compositional classification task (Definition 4.3.3) with Ztest = Aff(Ztrain).

4.4.1 Implementation of Proposed Approach

We describe the implementation of our approach for the problem of compositional population
shifts with z = (y, a). Our estimator p̂(z|x) (4.4) models each energy term Ei(x, y) and
E(x, a) as a linear layer composed with representations of a pre-trained network ϕ(x), i.e,
Ei(x, y) =< Wy, ϕ(x) > and Ei(x, a) =< Wa, ϕ(x) > where Wy and Wa are parameters of
the model. The interaction terms M̂(y, a) are parameters initialized to one, and p(z) assigns
prior probability based on counts of each factor in the training dataset. We write this as
equation below for the convenience of the reader.

p̂(z|x) = Softmax
(
− < Wy, ϕ(x) > − < Wa, ϕ(x) > − log M̂(z) + log p(z)

)
To make prediction for class labels y, we marginalize the probabilities over the attributes
a, p̂(y|x) =

∑
a p̂(y, a|x). We train this model with the cross-entropy objective where the

parameters of representation network ϕ(x) are frozen.

min
Wy ,Wa,M̂

Ex,(y,a) − [y log p̂(y|x)]

After training the parameters, we switch to the estimator p̃(z|x) (4.5) for inference at test
distribution. Since we have no knowledge about the ptest(z) we assign equal probabilties to
all the factors, which essentially has not effect on the Softmax, hence we drop that term.
Therefore, the final predictor for test time is ŷ = argminy

∑
a p̃(y, a|x), where

p̃(y, a|x) = Softmax
(
− < Wy, ϕ(x) > − < Wa, ϕ(x) > − log Q̂(z)

)
4.4.2 Setup

We experiment on the widely used benchnmarks for subpopulation shifts; Waterbirds [Wah
et al., 2011], CelebA [Liu et al., 2015], and MetaShift [Liang and Zou, 2022]. All these
datasets have binary class label y and binary attribute a, therefore we have a total of 4
factors (groups). To adapt these benchmarks for compositional shifts, we drop samples one of

58

Future Work: Compositional Generalization with Additive Energy Models

Removed (y, a) Method Average Acc Worst Group Acc

(0, 0) ERM 0.76 (0.0) 0.69 (0.0)
(0, 0) GroupDRO 0.86 (0.0) 0.78 (0.0)
(0, 0) AddEnergy 0.88 (0.0) 0.86 (0.0)

(0, 1) ERM 0.71 (0.0) 0.38 (0.0)
(0, 1) GroupDRO 0.79 (0.01) 0.41 (0.05)
(0, 1) AddEnergy 0.87 (0.0) 0.79 (0.01)

(1, 0) ERM 0.81 (0.01) 0.1 (0.02)
(1, 0) GroupDRO 0.92 (0.0) 0.74 (0.04)
(1, 0) AddEnergy 0.88 (0.0) 0.85 (0.0)

(1, 1) ERM 0.89 (0.0) 0.53 (0.0)
(1, 1) GroupDRO 0.91 (0.0) 0.77 (0.04)
(1, 1) AddEnergy 0.89 (0.0) 0.86 (0.0)

Table 4.1: Results for compositional generalization on the Waterbirds benchmark. The first
column describes the factors that were dropped during training. The performance for both
the metrics is denoted as mean ± standard error over 3 random seeds on the test dataset.

these groups entirely at training, while all the groups are present at test time. More details
about each datasets are provided in Appendix E.5.1.

For baselines, we use the naive ERM estimator, and GroupDRO [Sagawa et al., 2019] which is
a popular approach for tackling subpopulation shifts. For the baselines as well as our approach
we use pretrained ResNet-50 architecture as the repersentaiton network ϕ(x) and do not
finetune it further. The learnable parameters are linear layers on top of these representations.

For metrics, we report the average accuracy and the worst-group accuracy on the test dataset.
Due to imbalances in group distribution, a method can obtain good average accuracy despite
having bad worst-group accuracy. Hence, the worst-group accuracy is more indicative of
robustness to spurious correlations.

4.4.3 Preliminary Results

Table 4.1 presents the results for the Waterbirds benchmark, with results for CelebA and
MetaShit in Appendix E.5.2. We have 4 different settings created by dropping one of the four
factors during training. The proposed approach (AddEnergy) obtains significantly better
peformance than ERM and GroupDRO in terms of worst group accuracy in all the scenarios.
Further, the performance gains with AddEnergy over baselines is much higher for the scenario
where we dropped the groups (0, 1) and (1, 0), which were the minority groups in the original
training distribution (Table E.1), as in these cases the strength of spurious correlations

59

Future Work: Compositional Generalization with Additive Energy Models

increases, thus making it difficult for the baselines to generalize. Hence, our empirical results
provide evidence that additive energy assumption is realistic for modeling high-dimensional
images, and the proposed estimator (4.4) is able to extrapolate to novel combinations from
Aff(Ztrain) without estimating the partition function.

Planned Experiments. Our plan is to use more complex subpopulation shift bench-
marks like CivilComments [Borkan et al., 2019], MultiNLI [Williams et al., 2017], and
NICO++ [Zhang et al., 2023] where we both the class label y and spurious attribute a are
non-binary and the total number of factors are large, around 360 for NICO++.

Further, we plan to carry experiments to verify Theorem 4.2.7 on with synthetic datasets
like Colored-MNIST with factors as (class label, color); where we can systematically test the
influence of increasing the number of factors observed during training, and whether we are
able to empirically verify the O(m logm) bound. Once this is verified on ColoredMNIST, we
plan to test this for more complex datasets like ImageNet-Background [Xiao et al., 2020].

4.5 Future Directions

Compositional generalization with unknown factors. The main assumption
throughout our analysis with additive energy based model is that we observe the factors z
responsible for generating the data x. The next step is to solve the compositional generalization
task (Definition 4.3.3) without having access to the labeled factors z. However, before
tackling this challenging case directly, we aim to simplify the problem with the assumption
that we know the relevant class variables y but the other attributes are unknown, where
z = (y, a1, · · · , adz−1). This bears similarity to disentanglement with weak supervision as
observing y should help us identify the latent z from observations x. This setup has also
been the focus of recent works by Pezeshki et al. [2023] and Tsirigotis et al. [2024], where
they aim to solve subpopulation shifts with access to class labels y but no access to the
spurious attributes. While these works have shown good performance for inferring factors,
they have not been designed for the compositional shift task that is the focus of our work.
These approaches lack specific inductive biases that would favor them to discover composable
latent attributes from observations. Also, they do not provide any identification guarantees,
which can be the focus of our work. Hence, creating an approach to discover composable
latent factors given observations x and class labels y in an identifiable manner is an open
problem, and it serves as the ideal next step to extend our framework for compositional
generalization with additive energy models.

60

Future Work: Compositional Generalization with Additive Energy Models

Compositional Generative Modeling. While we proposed theoretical results
(Theorem 4.3.2) for extrapolation with additive energy models for generative tasks, we have
not empirically verified it yet. The current focus of the project was limited to compositional
classification task, hence we did not make progress in methodology for learning additive
energy models for generative tasks. This is another important problem for us to work on,
where the focus is on compositional generation and developing efficient strategies to train
additive energy models.

As a first step towards this goal, we would experiment on datasets like moving balls, etc. used
in prior works [Wiedemer et al., 2024] and show that additive energy models can be learned
from data with occlusions, and generate novel composition of these objects. For this task
we can assume that we know the latent factors (e.g. position coordinates) of these objects
and focus on solving compositional generation, akin to the experiments done by Wiedemer
et al. [2024]. Once we are able to make good progress on this task, we can move to the
next step of compositional generation without observing the latent factors. Currently, we do
not have theoretical evidence for identification of latent factors using additive energy based
decoders, but perhaps we can establish results similar to block identifibility with additive
decoders. The reason for this is additive energy model bears similarity to additive decoders
if we consider the score function ∇x log p(x|z) = − < 1,∇xE(x, z) >, and assuming perfect
estimation of score function would imply the following:

< 1,∇xÊ(x, ẑ) >=< 1,∇xE(x, z) >

This is similar to the identity we obtained as a result of perfect optimization of reconstruction
objective with additive decoders, so the same proof techniques could be helpful.

Further, there are a series of interesting works [Du et al., 2021, Liu et al., 2023, Su et al., 2024]
that provide empirical evidence for disentanglement with architectures that resemble additive
energy model. Hence, we believe that under the right assumptions it must be possible to
identify latent factors with additive energy models.

61

List of Contributions

• Evaluating Interventional Reasoning Capabilities of Large Language Models. [Preprint]
Tejas Kasetty, Divyat Mahajan, Gintare Karolina Dziugaite, Alexandre Drouin, Dhanya
Sridhar

• Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation.

Divyat Mahajan, Ioannis Mitliagkas, Brady Neal, Vasilis Syrgkanis

International Conference on Learning Representations [ICLR 2024 (Spotlight)]

• Additive decoders for latent variables identification and cartesian-product extrapolation.

Sébastien Lachapelle*, Divyat Mahajan*, Ioannis Mitliagkas, Simon Lacoste-Julien

Advances in Neural Information Processing Systems [NeurIPS 2023 (Oral)]

• Interventional causal representation learning.

Kartik Ahuja, Divyat Mahajan, Yixin Wang, Yoshua Bengio

International Conference on Machine Learning [ICML 2023 (Oral)]

• Synergies between disentanglement and sparsity: Generalization and identifiability in
multi-task learning.

Sébastien Lachapelle, Tristan Deleu, Divyat Mahajan, Ioannis Mitliagkas, Yoshua Ben-
gio, Simon Lacoste-Julien, Quentin Bertrand

International Conference on Machine Learning [ICML 2023]

• Towards efficient representation identification in supervised learning.

Kartik Ahuja*, Divyat Mahajan*, Vasilis Syrgkanis, Ioannis Mitliagkas.

Conference on Causal Learning and Reasoning [CleaR 2022]

62

Timeline

Fall 2024 Trimester. I plan to finish the ongoing project on compositional generaliza-
tion with additive energy models Chapter 4 and submit this ICLR 2025. There is another
project that I am leading on amortized learning of structural causal models that I didn’t
describe in this report. This project started in my internship with the causal machine learning
group at MSR Cambridge, and I am planning to submit that to ICLR 2025 as well.

Winter 2025, Summer 2025, Fall 2025 Trimesters. I plan to work on the
future problems described in Section 4.5; the project on compositional generalization with
only class labels known, and compositional generative models. There is a collaboration that I
will being soon with researchers at Service Now on causality with large language models; I
couldn’t go in details about that in the report. I plan to make progress on this project during
2025 as well.

Winter 2026, Summer 2026. I plan to wrap any existing projects and submit my
thesis by the end of Summer 2026.

63

References

K. Ahuja, J. Hartford, and Y. Bengio. Weakly supervised representation learning with sparse
perturbations, 2022.

K. Ahuja, D. Mahajan, Y. Wang, and Y. Bengio. Interventional causal representation learning.
In Proceedings of the 40th International Conference on Machine Learning, 2023.

M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 2013.

Y. Bengio, T. Deleu, N. Rahaman, R. Ke, S. Lachapelle, O. Bilaniuk, A. Goyal, and C. Pal.
A meta-transfer objective for learning to disentangle causal mechanisms. arXiv preprint
arXiv:1901.10912, 2019.

M. Besserve, R. Sun, D. Janzing, and B. Schölkopf. A theory of independent mechanisms
for extrapolation in generative models. In Proceedings of the 35th AAAI Conference on
Artificial Intelligence (AAAI), 2021.

D. Borkan, L. Dixon, J. Sorensen, N. Thain, and L. Vasserman. Nuanced metrics for measuring
unintended bias with real data for text classification. In Companion proceedings of the
2019 world wide web conference, pages 491–500, 2019.

J. Brehmer, P. De Haan, P. Lippe, and T. Cohen. Weakly supervised causal representation
learning. In Advances in Neural Information Processing Systems, 2022.

P. Brouillard, S. Lachapelle, A. Lacoste, S. Lacoste-Julien, and A. Drouin. Differentiable
causal discovery from interventional data. arXiv preprint arXiv:2007.01754, 2020.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

64

References

S. Buchholz, M. Besserve, and B. Schölkopf. Function classes for identifiable nonlinear
independent component analysis. In Advances in Neural Information Processing Systems,
2022.

S. Buchholz, G. Rajendran, E. Rosenfeld, B. Aragam, B. Schölkopf, and P. Ravikumar.
Learning linear causal representations from interventions under general nonlinear mixing.
Advances in Neural Information Processing Systems, 36, 2024.

C. P. Burgess, L. Matthey, N. Watters, R. Kabra, I. Higgins, M. Botvinick, and A. Lerchner.
Monet: Unsupervised scene decomposition and representation, 2019.

R. Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

D. M. Chickering. Optimal structure identification with greedy search. Journal of machine
learning research, 3(Nov):507–554, 2002.

M. Chickering, D. Heckerman, and C. Meek. Large-sample learning of bayesian networks is
np-hard. Journal of Machine Learning Research, 5:1287–1330, 2004.

P. Comon. Independent component analysis, a new concept? Signal processing, 36(3):287–314,
1994.

E. Crawford and J. Pineau. Spatially invariant unsupervised object detection with convo-
lutional neural networks. Proceedings of the AAAI Conference on Artificial Intelligence,
2019.

D. F. Crouse. On implementing 2d rectangular assignment algorithms. IEEE Transactions
on Aerospace and Electronic Systems, 52(4):1679–1696, 2016.

G. Darmois. General analysis of stochastic bonds: special study of linear factorial analysis.
Journal of the International Statistical Institute, pages 2–8, 1953.

T. Deleu, A. Góis, C. Emezue, M. Rankawat, S. Lacoste-Julien, S. Bauer, and Y. Bengio.
Bayesian structure learning with generative flow networks. arXiv preprint arXiv:2202.13903,
2022.

T. Deleu, M. Nishikawa-Toomey, J. Subramanian, N. Malkin, L. Charlin, and Y. Bengio.
Joint bayesian inference of graphical structure and parameters with a single generative flow
network. Advances in Neural Information Processing Systems, 36, 2024.

65

References

A. Dittadi, S. Papa, M. De Vita, B. Schölkopf, O. Winther, and F. Locatello. Generalization
and robustness implications in object-centric learning. arXiv preprint arXiv:2107.00637,
2021.

A. Dixit, O. Parnas, B. Li, J. Chen, C. P. Fulco, L. Jerby-Arnon, N. D. Marjanovic, D. Dionne,
T. Burks, R. Raychowdhury, et al. Perturb-seq: dissecting molecular circuits with scalable
single-cell rna profiling of pooled genetic screens. cell, 167(7):1853–1866, 2016.

Y. Du and I. Mordatch. Implicit generation and modeling with energy based models. In
Advances in Neural Information Processing Systems, 2019.

Y. Du, S. Li, Y. Sharma, J. Tenenbaum, and I. Mordatch. Unsupervised learning of
compositional energy concepts. Advances in Neural Information Processing Systems, 34:
15608–15620, 2021.

C. Eastwood and C. K. Williams. A framework for the quantitative evaluation of disentangled
representations. In International Conference on Learning Representations, 2018.

M. Engelcke, A. R. Kosiorek, O. P. Jones, and I. Posner. Genesis: Generative scene inference
and sampling with object-centric latent representations. In International Conference on
Learning Representations, 2020.

S. M. A. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepesvari, K. Kavukcuoglu, and G. E.
Hinton. Attend, infer, repeat: Fast scene understanding with generative models. In
Advances in Neural Information Processing Systems, 2016.

W. Feller. An introduction to probability theory and its applications, vol 2. John Wiley &
Sons, 2008.

J. C. Foster, J. M. Taylor, and S. J. Ruberg. Subgroup identification from randomized clinical
trial data. Statistics in medicine, 30(24):2867–2880, 2011.

M. Fumero, F. Wenzel, L. Zancato, A. Achille, E. Rodolà, S. Soatto, B. Schölkopf, and F. Lo-
catello. Leveraging sparse and shared feature activations for disentangled representation
learning. Advances in Neural Information Processing Systems, 36, 2024.

R. Geirhos, J.-H. Jacobsen, C. Michaelis, R. Zemel, W. Brendel, M. Bethge, and F. A.
Wichmann. Shortcut learning in deep neural networks. Nature Machine Intelligence, 2(11):
665–673, 2020.

66

References

K. Greff, A. Rasmus, M. Berglund, T. Hao, H. Valpola, and J. Schmidhuber. Tagger: Deep
unsupervised perceptual grouping. In Advances in Neural Information Processing Systems,
2016.

K. Greff, S. van Steenkiste, and J. Schmidhuber. Neural expectation maximization. In
Advances in Neural Information Processing Systems, 2017.

K. Greff, R. L. Kaufman, R. Kabra, N. Watters, C. Burgess, D. Zoran, L. Matthey,
M. Botvinick, and A. Lerchner. Multi-object representation learning with iterative varia-
tional inference. In Proceedings of the 36th International Conference on Machine Learning,
2019.

L. Gresele, J. von Kügelgen, V. Stimper, B. Schölkopf, and M. Besserve. Independent
mechanism analysis, a new concept? arXiv preprint arXiv:2106.05200, 2021.

H. Hälvä and A. Hyvarinen. Hidden markov nonlinear ica: Unsupervised learning from
nonstationary time series. In Conference on Uncertainty in Artificial Intelligence, pages
939–948. PMLR, 2020.

A. Hauser and P. Bühlmann. Characterization and greedy learning of interventional markov
equivalence classes of directed acyclic graphs. The Journal of Machine Learning Research,
13(1):2409–2464, 2012.

P. O. Hoyer, D. Janzing, J. M. Mooij, J. Peters, B. Schölkopf, et al. Nonlinear causal discovery
with additive noise models. In NIPS, volume 21, pages 689–696. Citeseer, 2008.

C.-Y. Hsieh, J. Zhang, Z. Ma, A. Kembhavi, and R. Krishna. Sugarcrepe: Fixing hackable
benchmarks for vision-language compositionality. Advances in neural information processing
systems, 36, 2024.

B. Huang, K. Zhang, Y. Lin, B. Schölkopf, and C. Glymour. Generalized score functions for
causal discovery. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1551–1560, 2018.

A. Hyvarinen and H. Morioka. Unsupervised feature extraction by time-contrastive learning
and nonlinear ica. Advances in Neural Information Processing Systems, 29:3765–3773,
2016.

A. Hyvarinen and H. Morioka. Nonlinear ica of temporally dependent stationary sources. In
Artificial Intelligence and Statistics, pages 460–469. PMLR, 2017.

67

References

A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications.
Neural networks, 13(4-5):411–430, 2000.

A. Hyvärinen and P. Pajunen. Nonlinear independent component analysis: Existence and
uniqueness results. Neural networks, 12(3):429–439, 1999.

A. Hyvarinen, H. Sasaki, and R. Turner. Nonlinear ica using auxiliary variables and generalized
contrastive learning. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 859–868. PMLR, 2019.

A. Hyvärinen and H. Morioka. Unsupervised feature extraction by time-contrastive learning
and nonlinear ica. In Advances in Neural Information Processing Systems, 2016.

A. Hyvärinen and H. Morioka. Nonlinear ICA of Temporally Dependent Stationary Sources.
In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,
2017.

A. Hyvärinen, H. Sasaki, and R. E. Turner. Nonlinear ica using auxiliary variables and
generalized contrastive learning. In AISTATS. PMLR, 2019.

M. Ibrahim, Q. Garrido, A. Morcos, and D. Bouchacourt. The robustness limits of sota vision
models to natural variation. arXiv preprint arXiv:2210.13604, 2022.

Y. Jiang and B. Aragam. Learning nonparametric latent causal graphs with unknown
interventions, 2023.

N. R. Ke, S.-J. Dunn, J. Bornschein, S. Chiappa, M. Rey, J.-B. Lespiau, A. Cassirer, J. Wang,
T. Weber, D. Barrett, M. Botvinick, A. Goyal, M. Mozer, and D. Rezende. Discogen:
Learning to discover gene regulatory networks, 2023.

I. Khemakhem, D. Kingma, R. Monti, and A. Hyvarinen. Variational autoencoders and
nonlinear ica: A unifying framework. In International Conference on Artificial Intelligence
and Statistics, pages 2207–2217. PMLR, 2020a.

I. Khemakhem, D. Kingma, R. Monti, and A. Hyvärinen. Variational autoencoders and
nonlinear ica: A unifying framework. In Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, 2020b.

I. Khemakhem, R. Monti, D. Kingma, and A. Hyvärinen. Ice-beem: Identifiable conditional
energy-based deep models based on nonlinear ica. In Advances in Neural Information
Processing Systems, 2020c.

68

References

I. Khemakhem, R. P. Monti, D. P. Kingma, and A. Hyvärinen. Ice-beem: Identifiable condi-
tional energy-based deep models based on nonlinear ica. arXiv preprint arXiv:2002.11537,
2020d.

M. Kocaoglu, C. Snyder, A. G. Dimakis, and S. Vishwanath. CausalGAN: Learning causal
implicit generative models with adversarial training. In International Conference on
Learning Representations, 2018.

D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang, R. Le Priol, and
A. Courville. Out-of-distribution generalization via risk extrapolation (rex). In Proceedings
of the 38th International Conference on Machine Learning, 2021.

S. Lachapelle and S. Lacoste-Julien. Partial disentanglement via mechanism sparsity. In UAI
2022 Workshop on Causal Representation Learning, 2022.

S. Lachapelle, P. Brouillard, T. Deleu, and S. Lacoste-Julien. Gradient-based neural dag
learning. arXiv preprint arXiv:1906.02226, 2019.

S. Lachapelle, T. Deleu, D. Mahajan, I. Mitliagkas, Y. Bengio, S. Lacoste-Julien, and
Q. Bertrand. Synergies between disentanglement and sparsity: a multi-task learning
perspective, 2022a.

S. Lachapelle, P. Rodriguez Lopez, Y. Sharma, K. E. Everett, R. Le Priol, A. Lacoste, and
S. Lacoste-Julien. Disentanglement via mechanism sparsity regularization: A new principle
for nonlinear ICA. In First Conference on Causal Learning and Reasoning, 2022b.

F. Leeb, G. Lanzillotta, Y. Annadani, M. Besserve, S. Bauer, and B. Schölkopf. Structure by
architecture: Disentangled representations without regularization, 2021.

W. Liang and J. Zou. Metashift: A dataset of datasets for evaluating contextual distribution
shifts and training conflicts. arXiv preprint arXiv:2202.06523, 2022.

Z. Lin, Y. Wu, S. V. Peri, W. Sun, G. Singh, F. Deng, J. Jiang, and S. Ahn. Space:
Unsupervised object-oriented scene representation via spatial attention and decomposition.
In International Conference on Learning Representations, 2020.

P. Lippe, T. Cohen, and E. Gavves. Efficient neural causal discovery without acyclicity
constraints. arXiv preprint arXiv:2107.10483, 2021.

P. Lippe, S. Magliacane, S. Löwe, Y. M. Asano, T. Cohen, and E. Gavves. iCITRIS: Causal
representation learning for instantaneous temporal effects. In UAI 2022 Workshop on
Causal Representation Learning, 2022a.

69

References

P. Lippe, S. Magliacane, S. Löwe, Y. M. Asano, T. Cohen, and E. Gavves. CITRIS: Causal
identifiability from temporal intervened sequences, 2022b.

N. Liu, Y. Du, S. Li, J. B. Tenenbaum, and A. Torralba. Unsupervised compositional
concepts discovery with text-to-image generative models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 2085–2095, 2023.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, pages 3730–3738,
2015.

F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Schölkopf, and O. Bachem. Chal-
lenging common assumptions in the unsupervised learning of disentangled representations.
In international conference on machine learning, pages 4114–4124. PMLR, 2019.

F. Locatello, B. Poole, G. Rätsch, B. Schölkopf, O. Bachem, and M. Tschannen. Weakly-
supervised disentanglement without compromises. In International Conference on Machine
Learning, pages 6348–6359. PMLR, 2020a.

F. Locatello, M. Tschannen, S. Bauer, G. Rätsch, B. Schölkopf, and O. Bachem. Disen-
tangling factors of variations using few labels. In International Conference on Learning
Representations, 2020b.

F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit,
A. Dosovitskiy, and T. Kipf. Object-centric learning with slot attention. Advances in
Neural Information Processing Systems, 33:11525–11538, 2020c.

A. Mansouri, J. Hartford, K. Ahuja, and Y. Bengio. Object-centric causal representation
learning. In NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations,
2022.

B. Mityagin. The zero set of a real analytic function. arXiv preprint arXiv:1512.07276, 2015.

G. E. Moran, D. Sridhar, Y. Wang, and D. Blei. Identifiable deep generative models via
sparse decoding. Transactions on Machine Learning Research, 2022.

J. Munkres. Analysis On Manifolds. Basic Books, 1991.

J. R. Munkres. Topology. Prentice Hall, Inc., 2 edition, 2000.

70

References

N. Pawlowski, D. Coelho de Castro, and B. Glocker. Deep structural causal models for
tractable counterfactual inference. Advances in neural information processing systems, 33:
857–869, 2020.

J. Pearl. Causality. Cambridge university press, 2009.

J. Peters and P. Bühlmann. Identifiability of gaussian structural equation models with equal
error variances. Biometrika, 101(1):219–228, 2014.

J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf. Causal discovery with continuous
additive noise models. Journal of Machine Learning Research, 2014.

J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference: foundations and
learning algorithms. The MIT Press, 2017.

M. Pezeshki, D. Bouchacourt, M. Ibrahim, N. Ballas, P. Vincent, and D. Lopez-Paz. Discov-
ering environments with xrm. arXiv preprint arXiv:2309.16748, 2023.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language
supervision. arXiv preprint arXiv:2103.00020, 2021.

A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

C. Rodriguez. Introduction to functional analysis. Cambridge MA, 2021. URL https://ocw.

mit.edu/courses/18-102-introduction-to-functional-analysis-spring-2021/.
MIT OpenCourseWare.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

K. Roth, M. Ibrahim, Z. Akata, P. Vincent, and D. Bouchacourt. Disentanglement of correlated
factors via hausdorff factorized support. In The Eleventh International Conference on
Learning Representations, 2023.

D. B. Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal
of the American Statistical Association, 100(469):322–331, 2005.

K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P. Nolan. Causal protein-signaling
networks derived from multiparameter single-cell data. Science, 308(5721):523–529, 2005.

71

https://ocw.mit.edu/courses/18-102-introduction-to-functional-analysis-spring-2021/
https://ocw.mit.edu/courses/18-102-introduction-to-functional-analysis-spring-2021/

References

S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang. Distributionally robust neural
networks for group shifts: On the importance of regularization for worst-case generalization.
arXiv preprint arXiv:1911.08731, 2019.

B. Schölkopf. Causality for machine learning. arXiv preprint arXiv:1911.10500, 2019.

B. Schölkopf, D. Janzing, J. Peters, E. Sgouritsa, K. Zhang, and J. Mooij. On causal and
anticausal learning. arXiv preprint arXiv:1206.6471, 2012.

B. Schölkopf, F. Locatello, S. Bauer, N. R. Ke, N. Kalchbrenner, A. Goyal, and Y. Bengio.
Toward causal representation learning. Proceedings of the IEEE, 109(5):612–634, 2021.

P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman. Causation, prediction, and search.
MIT press, 2000.

C. Squires, A. Seigal, S. Bhate, and C. Uhler. Linear causal disentanglement via interventions.
In Proceedings of the 40th International Conference on Machine Learning, 2023.

J. Su, N. Liu, Y. Wang, J. B. Tenenbaum, and Y. Du. Compositional image decomposition
with diffusion models. arXiv preprint arXiv:2406.19298, 2024.

X. Sun, D. Janzing, B. Schölkopf, and K. Fukumizu. A kernel-based causal learning algorithm.
In Proceedings of the 24th international conference on Machine learning, pages 855–862,
2007.

A. Taleb and C. Jutten. Source separation in post-nonlinear mixtures. IEEE Transactions
on Signal Processing, 1999.

F. J. Theis. Uniqueness of complex and multidimensional independent component analysis.
Signal Processing, 84(5):951–956, 2004.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing bayesian network
structure learning algorithm. Machine learning, 65:31–78, 2006.

C. Tsirigotis, J. Monteiro, P. Rodriguez, D. Vazquez, and A. C. Courville. Group robust
classification without any group information. Advances in Neural Information Processing
Systems, 36, 2024.

V. Vapnik. Principles of risk minimization for learning theory. In Advances in neural
information processing systems, pages 831–838, 1992.

72

References

J. Von Kügelgen, Y. Sharma, L. Gresele, W. Brendel, B. Schölkopf, M. Besserve, and
F. Locatello. Self-supervised learning with data augmentations provably isolates content
from style. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

J. von Kügelgen, M. Besserve, L. Wendong, L. Gresele, A. Kekić, E. Bareinboim, D. Blei,
and B. Schölkopf. Nonparametric identifiability of causal representations from unknown
interventions. Advances in Neural Information Processing Systems, 36, 2024.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
dataset. 2011.

Y. Wang and M. I. Jordan. Desiderata for representation learning: A causal perspective.
arXiv preprint arXiv:2109.03795, 2021.

Y. Wang and M. I. Jordan. Desiderata for representation learning: A causal perspective,
2022.

Z. Wang, L. Gui, J. Negrea, and V. Veitch. Concept algebra for text-controlled vision models,
2023.

T. W. Webb, Z. Dulberg, S. M. Frankland, A. A. Petrov, R. C. O’Reilly, and J. D. Co-
hen. Learning representations that support extrapolation. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V.
Le. Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652,
2021.

T. Wiedemer, J. Brady, A. Panfilov, A. Juhos, M. Bethge, and W. Brendel. Provable
compositional generalization for object-centric learning. arXiv preprint arXiv:2310.05327,
2023.

T. Wiedemer, P. Mayilvahanan, M. Bethge, and W. Brendel. Compositional generalization
from first principles. Advances in Neural Information Processing Systems, 36, 2024.

A. Williams, N. Nangia, and S. R. Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

K. Xiao, L. Engstrom, A. Ilyas, and A. Madry. Noise or signal: The role of image backgrounds
in object recognition. arXiv preprint arXiv:2006.09994, 2020.

73

References

Y. Xie, J. E. Brand, and B. Jann. Estimating heterogeneous treatment effects with observa-
tional data. Sociological methodology, 42(1):314–347, 2012.

Y. Yang, H. Zhang, D. Katabi, and M. Ghassemi. Change is hard: A closer look at
subpopulation shift. arXiv preprint arXiv:2302.12254, 2023.

W. Yao, G. Chen, and K. Zhang. Learning latent causal dynamics. arXiv preprint
arXiv:2202.04828, 2022a.

W. Yao, Y. Sun, A. Ho, C. Sun, and K. Zhang. Learning temporally causal latent processes
from general temporal data. In International Conference on Learning Representations,
2022b.

J. Zhang, K. Greenewald, C. Squires, A. Srivastava, K. Shanmugam, and C. Uhler. Identifia-
bility guarantees for causal disentanglement from soft interventions. Advances in Neural
Information Processing Systems, 36, 2024.

K. Zhang, J. Peters, D. Janzing, and B. Schölkopf. Kernel-based conditional independence
test and application in causal discovery. arXiv preprint arXiv:1202.3775, 2012.

X. Zhang, Y. He, R. Xu, H. Yu, Z. Shen, and P. Cui. Nico++: Towards better benchmarking
for domain generalization. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 16036–16047, 2023.

Y. Zhang and Q. Yang. A survey on multi-task learning. arXiv preprint arXiv:1707.08114,
2017.

X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing. Dags with no tears: Continuous
optimization for structure learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.

cc/paper/2018/file/e347c51419ffb23ca3fd5050202f9c3d-Paper.pdf.

Y. Zheng, I. Ng, and K. Zhang. On the identifiability of nonlinear ICA: Sparsity and beyond.
In Advances in Neural Information Processing Systems, 2022.

R. S. Zimmermann, Y. Sharma, S. Schneider, M. Bethge, and W. Brendel. Contrastive
learning inverts the data generating process. arXiv preprint arXiv:2102.08850, 2021.

74

https://proceedings.neurips.cc/paper/2018/file/e347c51419ffb23ca3fd5050202f9c3d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e347c51419ffb23ca3fd5050202f9c3d-Paper.pdf

Appendix A

Supplementary Material:

Mathematical Preliminaries

A.1 Measure Theory

This section summarizes main concepts on measure theory from the lecture notes of the
MIT OCW course on functional analysis [Rodriguez, 2021], specifically the lectures 6-9 that
present measure theory.

The motivation behind measure theory is to understand how we can assign a notion of
length to arbitrary subsets of real numbers. Let’s start the discussion by considering intervals,
for which we can easily define length. An interval I ⊂ R is defined by two endpoints (l, r)
such that l ≤ r and it contains all the real numbers x such that l < x < r. If l, r ∈ I then it
a closed interval, else we refer it as an open interval. Given any interval I ⊂ R, we can
define its length as l(I) = r − l. But how we assign notion of length to any arbitrary subset
of R? We define outer measure as a first step towards this problem.

Definition A.1.1 (Outer Measure). For any subset A ⊆ R, we define the outer measure
m∗(A) : P (R)→ [0,∞] as follows:

m∗(A) = inf

{∑
n

l(In) | {In} is a countable collection of open intervals s.t. A ⊆ ∪nIn

}

where l(I) denotes the length of an interval.

The definitions states that if we measure the length of all possible coverings of a set A
using union of open intervals {In}, then outer measure corresponds to the greatest lower
bound (infimum) on the length of these coverings. Hence, outer measure provide us with a

75

Supplementary Material: Mathematical Preliminaries

notion to "measure" the set A. In fact, if A is an interval, then we have the outer measure is
the same as the length, m∗(A) = l(A).

Sets with zero outer measure. For an empty set A = ϕ, the outer measure will
be zero, m∗(A) = 0. To prove this, we consider an interval I = (−ϵ, ϵ) that contains A.
Therefore, by the definition of outer measure we have m∗(A) ≤ l(I) = 2ϵ. As ϵ → 0, we
obtain 0 ≤ m∗(A) ≤ l(I) = 0, which implies m∗(A) = 0.

Further, we can show that the outer measure of a set A containing a single point (A = {a})
will be zero as well. To prove it, consider the open interval I = (a− ϵ, a+ ϵ) and follow the
same proof technique as above. Also, this can be extended to show that all countable sets A
have zero outer measure.

Monotonicity of outer measure. Consider any two sets A, B such that A ⊆ B,
then we have m∗(A) ≤ m∗(B). Intuitively, for any interval that I that contains B, we must
have that I contains A as well; this can be used to prove m∗(A) ≤ m∗(B).

Countable Sub-Additivity of outer measure. Consider a countable collection of
pairwise disjoint sets {∪nAn}, then for outer measure m∗ we have the following: m∗(∪nAn) ≤∑

nm
∗(An). The proof for this claim is provided in the lecture notes 6 (Theorem 62) of the

functional analysis course [Rodriguez, 2021].

Towards Lebesgue measure. Given outer measure satisfies countable sub-additivity
(m∗(∪nAn) ≤

∑
nm

∗(An)), the next question to tackle is when does the outer measure
achieve countable additivity (m∗(∪nAn) =

∑
nm

∗(An))? Note that countable additivity is a
desirable property for measuring sets, as it implies that the measure of a countable union of
pairwise disjoint sets is equal to the sum of the measure of each set; therefore we can measure
each individual set and use them to measure the set constructued by their union.

Infact, if we restrict the outer measure to a particular class of sets, termed as lebesque
measurable sets, then outer measure would satisfy countable addivity on them!

Definition A.1.2 (Lebesgue Measurable Sets). A set E ⊆ R is lebesgue measurable if
∀A ⊆ R we have

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec)

Definition A.1.3 (Lebesgue Measure). The restriction of outer measure (m∗) to lebesgue
measurable sets is called the lebesgue measure (m).

76

Supplementary Material: Mathematical Preliminaries

Note that lebesgue measure is not defined for all subsets of R , while the outer measure is
defined on all subsets of R. This restriction to lebesgue measurable sets allow the important
property of countable additivity. Therefore, with lebesgue measure we retain all the properties
we proved earlier for outer measure, along with the countable additivity. The key properties
of the lebesgue measure can summarized below.

1. By definition, lebesgue measure is non-negative, m(A) ≥ 0.

2. Lebesgue measure of an empty set is zero, m({ϕ}) = 0.

3. Countable Additivity: For countable collection of disjoint sets {An}, m(∪nAn) =∑
nm(An).

4. Lebesgue measure of an interval (I) is equal to its length, m(I) = l(I).

Lets understand the structure of lebesgue measurable sets (Def. A.1.2) in more detail. Note
that set empty E = {ϕ} is lebesgue measurable; since we have A ∩ E = ϕ and A ∩ Ec = A,
and we know that m∗({ϕ}) = 0. Further, by definition if E is lebesgue measurable then Ec

is also lebesgue measurable. It can also be proved that if a countable collection of sets {En}
is lebesgue measurable, then their union (∪nEn) is also lebesgue measurable.

To summarize, the set of lebesgue measurable sets are closed under complement and countable
unions. Alternatively, the set of lebesgue measurable sets form a σ-algebra, defined as follows.

Definition A.1.4 (σ-algebra). Given a set X, σ-algebra (Σ) is a collection of subsets of X (
Σ ⊂ P(X)) if we have the following:

1. ϕ ∈ Σ

2. Closed under complement: If E ∈ Σ, then Ec ∈ Σ

3. Closed under countable union: If En ∈ Σ for a countable collection {En}, then
∪nEn ∈ Σ.

Generalizing the discussion to arbitrary measure spaces. Lebesgue
measure is an example of a function that maps a collection of subsets of R to non-negative
real numbers, allowing us to measure these sets. We now present the concept of a measure,
which is inspired from the properties of lebesgue measure and allows to define more general
ways of "measuring" sets.

Definition A.1.5 (Measure). Given a set X and σ-algebra Σ of X, a function µ : Σ→ [0,∞]

is called as measure if we have the following:

77

Supplementary Material: Mathematical Preliminaries

1. µ({ϕ}) = 0

2. For countable collection of disjoint sets {En} such that En ∈ Σ, we have µ(∪nEn) =∑
n µ(En).

Further, (X,Σ) is called measurable space and the tuple (X,Σ, µ) is called measure space.

It is easy to see that lebesgue measure satisfies all the conditions in the above definition
with X = R, hence making it a valid measure. Another popular example of a measure is
the counting measure, defined as follows: for all finite sets E ∈ Σ for a measurable space
(X,Σ) the counting measure (µc) is equal to the cardinality of the set, µc(E) = |E|. For
infinite sets, we define the counting measure to be infinite as well. Hence, counting measure
provides with a very intuitive way of "measuring" sets, by simply counting the total numbers
of elements in that set.

78

Appendix B

Supplementary Material:

Background

B.1 Backdoor estimator for ATE

To recap the setup, we intervene on the binary treatment variable W and want to estimate
the average treatment effect on outcome variable Y . Hence, we obtain the following as per
the objective of ATE:

ATE := E[Y |do(W = 1)]− E[Y |do(W = 0)]

=⇒
∫
Y p(Y |do(W = 1))dY −

∫
Y p(Y |do(W = 0))dy

Now using the backdoor estimator, we can express the interventional distribution as a
function of the observed distribution, p(Y |do(W)) =

∫
p(Y |X,W)p(X)dx. Substituting this

in the expression above for ATE we obtain the following:

ATE :=

∫
Y p(Y |do(W = 1))dY −

∫
Y p(Y |do(W = 0))dy

=⇒
∫
Y

∫
p(Y |X,W = 1)p(X)dx dy −

∫
Y

∫
p(Y |X,W = 0)p(X)dx dy

=⇒
∫ ∫

Y p(Y |X,W = 1)dy dx−
∫ ∫

Y p(Y |X,W = 0)dy dx

=⇒ EX [EY [Y |X,W = 1]− EX [EY [Y |X,W = 0]]

79

Supplementary Material: Background

B.2 Local vs Global Disentanglement

As per the Definition 1.2.3, we have that jacobian of v : Z → Ẑ is a permuted diagonal
matrix. Let consider an example with 2-dimensional latent factors (dz = 2) and say the

jacobian Dv is given by the matrix [[0, 1], [1, 0]], which implies
∂v1(z)

∂z2
= 0 and

∂v2(z)

∂z1
= 0.

Lets focus on only the first expression, integrating that would imply:

v1(z) = z2 + C1 ∀z ∈ Z

However, C1 is constant if the support Z is path-connected. Otherwise we could divide
Z = Z1 ∪ Z2 such that C1(z) ̸= C1(z

′) where z ∈ Z1 and z′ ∈ Z2. The implication of
this is that v1(z) changes based on whether z ∈ Z1 or z ∈ Z2, and if the these supports
were correlated with z1, then v1(z) is a function of both z1 and z2! Which implies the
disentanglement holds locally in regions of connected support but it does not hold globally
across the entire support.

To understand this with an example, construct Z1 = {z | z1 < −1} and Z2 = {z |; z1 > 1}.
Also, C1 = −1 ∀z ∈ Z1 and C1 = 1 ∀z ∈ Z2. Then we have v1(z) = z2 − 1 ∀z ∈ Z1 and
v1(z) = z2 + 1 ∀z ∈ Z2. Hence, for each connected block Z1 and Z2, the function v1(z) only
depends on z2 but that dependence changes based on z1! Hence, globally v1(z) depends on
both z1 and z2.

Hence, Definition 1.2.3 implies that a one-to-one correspondence between z and ẑ locally,
which may not hold across the entire support. If instead the function v : Z → Ẑ maintains
the same local disentanglement structure across its entire support, then we term it as global
disentanglement.

B.3 Indeterminacy in latent identification with

reconstruction objective

We consider the optimal solution f̂ , ĝ to the reconstruction objective, i.e., Ex∼X ||x −
ĝ(f̂(x))||2 = 0, which implies x = ĝ(f̂(x)) ∀x ∈ X , except over a set of measure zero.

Now denoting ẑ = f̂(x) and substituting x = g(z) per the data generation process, we

80

Supplementary Material: Background

establish the indeterminacy in latent recovery as follows:

ĝ(f̂(x)) = x ∀x ∈ X

=⇒ ĝ(ẑ) = g(z) ∀z ∈ Z

=⇒ ẑ = ĝ−1 ◦ g(z) ∀z ∈ Z

Hence, we have ẑ = v(z) = ĝ−1 ◦ g(z) ∀z ∈ Z.

Note: The second step the derivation above relies on the assumption that g is an injective
function. Otherwise we could have different z, z′ ∈ Z such that x = g(z) = g(z

′
). Injectivity

of the mixing function g is a crucial assumption in several works on identifiable representation
learning.

Remark on v being diffeomorphism. If we assume that the true decoder g and the
learned decoder ĝ are diffeomorphisms, then v is also a diffeomorphism as diffeomorphisms
are closed under composition. Hence, for some proof techniques we can even operate with
the inverse mapping, i.e, we define v : Ẑ → Z as z = v(ẑ) = g ◦ ĝ(z) ∀ẑ ∈ Ẑ. For example,
proofs in Chapter 3, we consider the v as a map from the learned latent space to the true
latent space.

B.4 Proof of Proposition 1.2.4 (Linear ICA)

Proposition 1.2.4. Let Z, Ẑ ∈ Rdz be random variables s.t. ẑ = Az ∀z ∈ Z. If Z and
Ẑ have mutually independent components and no component of Z is gaussian, then A is
permutation & scaling matrix.

Proof. We first state the Darmois-Skitovitch Theorem as it will be useful for proving this
proposition.

Darmois-Skitovitch Theorem [Theis, 2004]: Let Y1 =
∑d

i=1 αiZi, Y2 =
∑d

i=1 βiZi be
linear combination of mutually independent random variables {Z1, · · · , Zn} where αi, βi ∈ R
. If Y1 and Y2 are mutually independent, then all Zi with αiβi ̸= 0 are gaussian.

Now lets consider two components of the learned latents, ẑi, ẑj, which can be written as
follows using the relationship ẑ = Az ∀z ∈ Z.

Ẑi =
dz∑
k=1

Ai,kzk , Ẑj =
dz∑
k=1

Aj,kzk

Since both Z, Ẑ has mutually independent components, therefore, by Darmois-Skitovitch

81

Supplementary Material: Background

Theorem we have any latent component zk with Ai,k ∗ Aj,k ̸= 0 must be gaussian. Since
we have assumed that no latent component Zk is gaussian, we must have Ai,k ∗ Aj,k = 0

∀i, j, k ∈ [dz] , i ̸= j, which implies either Ai,k = 0 or Aj,k = 0 ∀i, j, k ∈ [dz] , i ̸= j.

Now for a fixed k we cannot have Ai,k = 0 ∀i ∈ [dz] as the matrix A is invertible. Therefore,
for each k ∈ [dz], we have a unique i∗ ∈ [dz] such that Ai∗,k ̸= 0 and Ai,k = 0 ∀i ̸= i∗. Hence,
each component of the true latent zk can contribute to only one component of the learned
latent ẑi∗ . Alternatively, each column of the matrix A contains only a single non-zero entry,
i.e., each column is 1-sparse. Since the matrix A is invertible, we must have the columns are
linearly independent and because the columns are 1-sparse, each column A:,k is a scaling of
the basis vector eπ(k) where π is permutation over the set [dz]. This concludes the proof that
the matrix A is a permutation & scaling matrix.

B.5 Non-Linear ICA Using Auxiliary Variables and

Contrastive Learning

Theorem 1.2.6. Given the data generation process (E.q. 1.9) and the optimal solution (f̂ , ĥ)
under the learning objective (E.q. 1.10), along with the extra assumptions stated below:

1. The learned encoder f̂ = (f̂1, · · · , f̂dz) and the mixing function g are C2-diffemorphisms.

2. The functions qi(zi, u) in the log density function p(Z|U) are C2-functions.

3. Assumption of Sufficient Variability. Denote the diagonal terms of the jacobian and
hessian of q(z, u) w.r.t z as w(z, u) =

(∂q1(z1,u)
∂z1

, · · · , ∂qdz (zdz ,u)
∂zdz

, ∂2q1(z1,u)
∂2z1

, · · · , ∂
2qdz (zdz ,u)

∂2zdz

)
.

Then ∀z ∈ Z ∃ 2 ∗ dz + 1 values for u such that the following set of vectors are inde-
pendent:

{
w(z, ui)− w(z, u0) | i ∈ [1, 2 ∗ dz]

}
.

Then we achieve disentanglement (Def. 1.2.3) with the learned latent variables ẑ where
ẑ = f̂(x).

To get some intuition behind the theorem, lets first understand how optimizing the
learning objective constrains the indeterminacy in latent recovery, ẑ = v(z) = f̂ ◦ g(z)
(E.q. 1.8). Note that for the optimal solution of binary logistic regression we have that the
learned logit (ψ̂(x, u)) should equal the difference in log density function of the two classes,
i.e., log p(x, u)− log p(x, u∗).

ψ̂(x, u) = log p(x, u)− log p(x, u∗)

82

Supplementary Material: Background

Note that x and u∗ are independent as u∗ is randomly sampled, hence log p(x, u∗) = log p(x)+

log(u). As per the usual factorization of log p(x, u) = log p(x|u) + log(u), we see that the
factor of log p(x|u) cancel out and we have the following.

ψ̂(x, u) = log p(x|u)− log p(x)

Now we perform change of variable x = g(z) and using the change of probability density
formulae p(x) = p(g−1(x)) | det J(g−1(x))|, we have the following.

ψ̂(x, u) = log p(x|u)− log p(x)

=⇒ ψ̂(x, u) = log p(g−1(x)|u) + log | det J(g−1(x))| − log p(g−1(x))− log | det J(g−1(x))|

=⇒ ψ̂(x, u) = log p(g−1(x)|u)− log p(g−1(x))

=⇒
dz∑
i=1

ĥi(f̂i(x)), u) = log p(g−1(x)|u)− log p(g−1(x))

Now using z = g−1(x) and ẑ = f̂(x) s.t. ẑ = v(z) = f̂ ◦ g(x), we have the final expression.

dz∑
i=1

ĥi(vi(z)), u) =
dz∑
i=1

qi(zi, u)− logp(z)

Following the proof by the authors, we would differentiate the above equality twice w.r.t
z, hence the assumption of C2 for the functions (g, f̂ , qi). Also, the proof would require
us to work with the inverse of v(z), i.e., v−1(z) = g−1 ◦ f̂−1(z), hence we need (g, f̂) to be
C2-diffeomorphisms. The assumption of sufficient variability intuitively suggests that the
effect of auxiliary information (U) on the latent variables (Z) should be diverse. Since this
assumption is hard to justify, the authors also prove that exponential family distributions
under some assumptions on their sufficient statistics would satisfy this assumption.

B.6 Weakly-supervised disentanglement without

compromises

Theorem 1.2.7. Given the data generation process (E.q. 1.11) and the optimal solution
(f̂ , ĝ) under the learning objective (E.q. 1.12), along with the following extra assumptions:

1. The mixing function/true decoder (g) and the learned decoder (ĝ) are diffeomorphisms

2. The learner knows the coordinate set S which is fixed across all the data pairs.

83

Supplementary Material: Background

Then we achieve block disentanglement, i.e., ẑ = v(z) such that ẑS depends only on the latent
component in S (zS) and ẑS̄ depends only on the latent components in S̄ (zS̄).

To get some intuition behind the theorem, we first characterize the indeterminacy in
latent recovery ẑ = v(z) = ĝ−1 ◦g(z), which is derived in a similar way as with Auto-Encoders
(E.q. 1.7). Then we utilize the constraints on the learned (ẑ, ˆ̃z) and true latent pairs (z, z̃)
that their components are mutually independent and they need to match on the set S, which
further restricts the function v and allows us to achieve block disentanglement. I found flaws
in the proof for this claim by the authors and have discussed that in detail ahead, where I
also provide an alternative proof for this claim.

Before discussing the proof, there are some important extension of the block identifiability
results proposed by the authors. The identification result above can be extended to the case
when the learner does not know the set S but knows its cardinality, hence it knows the total
number of shared components across the pairs (X, X̃) The learner enforces the constraint
that components of (Ẑ, ˆ̃Z) need to match on a coordinate set T where |T | = |S|. Therefore,
we would still obtain block disentanglement, ẑ = v(z) such that ẑT depends only on the latent
component in S (zS) and ẑT̄ depends only on the latent components in S̄ (zS̄). For the case
of varying S across data pairs (X, X̃), we can get stronger identification guarantees and the
authors show that we can achieve disentanglement under assumptions on the variation of S.

Proof. We now discuss the proof for Theorem 1.2.7 done by the authors, and highlight the
issues with their proof along with potential fix. We first restate the constraint that the
learned latents variables (ẑ, ˆ̃z) have shared components on the coordinate set S (E.q. 1.12).

ẑi = ˆ̃zi ∀i ∈ S

ẑj ̸= ˆ̃zj ∀j ∈ S̄

Note that for Auto-Encoders the learned latents (ẑ, ˆ̃z) are related to the true latents (z, z̃)
via the function v(z) = ĝ−1 ◦ g(z) ∀z ∈ Z; as proved in Appendix B.3. Hence, we substitute
ẑ = v(z) & ˆ̃z = v(z̃) in the equation above.

vi(z) = vi(z̃) ∀i ∈ S

vj(z) ̸= vj(z̃) ∀j ∈ S̄

Following the data generation process(E.q. 1.11), we know the true latents also share compo-
nents on the coordinate set S, i.e, z̃ = h(z, y, S) where z̃S = zS and z̃S̄ = y such that z̃S̄ ̸= zS̄.

Lets assume the set S represents the first dz − k coordinates of the latents, as it does not

84

Supplementary Material: Background

affect our analysis and we would only incur a permutation indeterminacy. Hence, we can
write z = (zS, zS̄) and z̃ = (zS, y) where y ̸= zS̄. Substituting this in the equation above, we
obtain the following.

vi(zS, zS̄) = vi(zS, y) ∀i ∈ S (a)

vj(zS, zS̄) ̸= vj(zS, y) ∀j ∈ S̄ (b)

Comment on the proof by authors. The authors in their proof conclude from the above
equality that the jacobian of v w.r.t z must be block-diagonal matrix with the first block
of dimension |S| × |S| which implies vS(z) is a function of only zS, and the second block of
dimension |S̄| × |S̄| which implies vS̄(z) is a function of only zS̄.

However, we can construct a counterexample with z ∈ R2, |S| = |S̄| = 1 and function v

as a linear operator defined by the matrix

(
1 0

1 1

)
. We have v1(z1, z2) = v1(z1, y) and

v2(z1, z2) ̸= v2(z1, y) ∀z2 ≠ y. Since v is a linear operator, its jacobain is the same v which is
not block diagonal. Hence, the system of equations a and b can be satisfied by a function v
such that the jacobian of v is not block diagonal.

Note that if we differentiate equation a w.r.t zj ∈ S̄, then we have the following.

∂vi(zS, zS̄)

∂zj
=
∂vi(zS, y)

∂zj
∀i ∈ S, ∀j ∈ S̄

=⇒ ∂vi(zS, zS̄)

∂zj
= 0 ∀i ∈ S, ∀j ∈ S̄

(B.1)

Hence, we have Jacz(v)S,S̄ = 0, which implies vS(z) if a function of only zS. Therefore, in

general we can say the jacobain of v is

(
A|S|×|S| 0|S|×|S̄|

B|S̄|×|S| C|S̄|×|S̄|

)
where the block B|S̄|×|S| is not

necessarily zero as shown by the counterexample above.

My attempt at the proof. So far we have established that following the system of equations

a and b we can conclude that the jacobain of v is

(
A|S|×|S| 0|S|×|S̄|

B|S̄|×|S| C|S̄|×|S̄|

)
. Now I will make

use of the constraint of mutual independence between the components of the true latents z
(E.q. 1.11) and the learned latents ẑ (E.q. 1.12) and show that for linear functions v we will
achieve block disentanglement (jacobian of v is block diagonal). Note that I could not prove
this result for a general non-linear invertible function v.

Claim: If the function ẑ = v(z) is an invertible linear transformation, then under the

85

Supplementary Material: Background

constraints a, b, and B.1, along with mutual independence in components of Z and Ẑ, we

have that jacobian of v w.r.t z is block diagonal, Jacz(v) =

(
A|S|×|S| 0|S|×|S̄|

0|S̄|×|S| C|S̄|×|S̄|

)
.

Proof for the claim. Since we have assumed that v is linear transformation, lets represent
it via the matrix V , which implies vi(z) =

∑
k∈S Vi,kzk +

∑
k∈S̄ Vi,kzk. Further, following

E.q. B.1, we have vi(z) =
∑

k∈S Vi,kzk ∀i ∈ S as there is no dependence on the components
in zS̄.

Now pick any i ∈ S and any j ∈ S̄, then because ẑi = vi(z) and ẑj = vj(z) are independent,
we must have the covariance between them must be zero, Cov(ẑi, ẑj) = 0, which can be
further simplified as follows.

Cov(vi(z), vj(z)) = 0

=⇒ Cov
(∑

k′∈S

Vi,k′zk′ ,
∑
k∈S

Vj,kzk +
∑
k∈S̄

Vj,kzk

)
= 0

=⇒ Cov
(∑

k′∈S

Vi,k′zk′ ,
∑
k∈S

Vj,kzk

)
+ Cov

(∑
k′∈S

Vi,k′zk′ ,
∑
k∈S̄

Vj,kzk

)
= 0

(B.2)

Lets analyze the second term in the equation above, Cov
(∑

k′∈S Vi,k′zk′ ,
∑

k∈S̄ Vj,kzk

)
.

This can be further simplified as follows:

Cov
(∑

k′∈S

Vi,k′zk′ ,
∑
k∈S̄

Vj,kzk

)
=
∑
k′∈S

∑
k∈S̄

Vi,k′Vj,kCov
(
zk′ , zk

)
= 0

where the last equality follows from the assumption that the components of latent variable Z
are mutually independent, hence Cov

(
zk′ , zk

)
= 0 ∀k′ ∈ S, k ∈ S̄.

Therefore susbtituing this in E.q. B.2, we obtain Cov
(∑

k′∈S Vi,k′zk′ ,
∑

k∈S Vj,kzk

)
= 0,

which is simplified further below.

Cov
(∑

k′∈S

Vi,k′zk′ ,
∑
k∈S

Vj,kzk

)
= 0

=⇒
∑
k′∈S

∑
k∈S

Vi,k′Vj,kCov
(
zk′ , zk

)
= 0

=⇒
∑
k∈S

Vi,kVj,kCov
(
zk, zk

)
+

∑
k,k′∈S , k ̸=k′

Vi,k′Vj,kCov
(
zk′ , zk

)
= 0

=⇒
∑
k∈S

Vi,kVj,kV ar
(
zk

)
= 0

86

Supplementary Material: Background

where the last equality follows from the assumption that the components of latent variable Z
are mutually independent.

Lets denote Vj,kV ar
(
zk

)
as Vj′,k, then we have

∑
k∈S Vi,kVj′,k = 0 ∀i ∈ S & j ∈ S̄

This implies
∑

k∈S Vj′,kA
k = 0 where Ak = (V1,k, · · · , V|S|,k) denotes the restriction of the

k-th column of matrix V to the first |S| elements. Since the matrix V is invertible and has

the form

(
A|S|×|S| 0|S|×|S̄|

B|S̄|×|S| C|S̄|×|S̄|

)
, it implies that matrix A|S|×|S| is invertible as well. Therefore,

the set of vectors {A1, · · · , A|S|} are linearly independent.

Hence,
∑

k∈S Vj′,kA
k = 0 implies Vj′,k = 0 ∀k ∈ S & j ∈ S̄ due to the linear independence

of columns of A, which can be further simplified as follow under the assumption that
V ar(zk) > 0 ∀k ∈ S.

Vj′,k = 0 ∀k ∈ S & j ∈ S̄

=⇒ Vj,kV ar
(
zk

)
= 0 ∀k ∈ S & j ∈ S̄

=⇒ Vj,k = 0 ∀k ∈ S & j ∈ S̄

This proves the claim that all elements the matrix V in the off diagonal blocks are zero.

87

Appendix C

Supplementary Material: Towards

efficient representation

identification in supervised learning

C.1 Proof for Linear Identification with ERM.

Corollary C.1.1. Given the data generation process (Assumption 2.2.1) except the assumption
of mutual independence and non-gaussianity on Z, and the optimal solution Θ† ◦ Φ† to the
ERM objective (2.4) with ℓ as square loss for regression and cross-entropy loss for classification,
along with the exta assumptions stated below:

• Assumption 2.3.2 for the true solution g−1 and Γ.

• The number of tasks k is equal to the dimension of the latent d,

Then we achieve linear identification (Definition 1.2.1) with the learned latent variables
ẑ = Φ†(x).

Proof. Consider we are in the regression setting, then using X ← g(Z) and Y ← ΓZ +N as
per the data generation process, the risk of a predictor f can be written as follows:

R(f) = E
[
∥Y − f(X)∥2

]
= E

[
∥ΓZ +N − f ◦ g(Z)∥2

]
= E

[
∥ΓZ − f ◦ g(Z)∥2

]
+ E

[
∥N∥2

]
− 2 ∗ E[(ΓZ − f ◦ g(Z))TN]

= E
[
∥ΓZ − f ◦ g(Z)∥2

]
+ E

[
∥N∥2

]
(since Z ⊥ N and E[N] = 0)

(C.1)

88

Supplementary Material: Towards efficient representation identification in supervised
learning

Hence, we have R(f) ≥ E
[
∥N∥2

]
for all functions f : Rd → Rd. Since g−1 ∈ HΦ and

Γ ∈ HΘ, Γ ◦ g−1 is a valid solution as per the ERM (2.3) objective and also achieves the
lowest error possible, i.e., R(Γ ◦ g−1) = E[∥N∥2]. Hence, if we consider the optimal solution
(Θ† ◦ Φ†) to ERM, then we must have the following equality except over a set of measure
zero.

Θ† ◦ Φ†(X) = ΓZ

=⇒ Φ†(X) = (Θ†)−1ΓZ

=⇒ Ẑ = AZ

(C.2)

Note that the matrix A = (Θ†)−1Γ is invertible as both Θ† and Γ are invertible due
to Assumption 2.3.2. Therefore, we have Ẑ = AZ with an invertible matrix A, therefore we
achieve linear identification.

Classification Case. We can also carry out the same proof for the multi-task classification
case. In multi-task classification we can write the condition for optimality as

σ
(
Ω†Φ†(X)

)
= σ

(
ΓZ
)

(C.3)

where sigmoid is applied separately to each element, and since the sigmoids are equal, this
implies the individual elements are also equal. Therefore, Ω†Φ†(X) = ΓZ and we can use the
same analysis as the regression case from this point on.

C.2 Proof of Theorem 2.3.3: IC-ERM (case k=d)

Theorem 2.3.3. Given the data generation process (Assumption 2.2.1) and the optimal
solution Θ† ◦ Φ† to IC-ERM (2.3) with ℓ as square loss for regression and cross-entropy loss
for classification, along with the exta assumptions stated below:

• Assumption 2.3.2 for the true solution g−1 and Γ.

• The number of tasks k is equal to the dimension of the latent d,

Then we achieve permutation & scaling identifiability (Definition 1.2.2) with the learned latent
variables ẑ = Φ†(x).

Proof. Consider we are in the regression setting for the data generation process in Assump-
tion 2.2.1. Therefore, using X ← g(Z) and Y ← ΓZ +N , the risk of a predictor f can be

89

Supplementary Material: Towards efficient representation identification in supervised
learning

written as follows:

R(f) = E
[
∥Y − f(X)∥2

]
= E

[
∥ΓZ +N − f ◦ g(Z)∥2

]
= E

[
∥ΓZ − f ◦ g(Z)∥2

]
+ E

[
∥N∥2

]
− 2 ∗ E[(ΓZ − f ◦ g(Z))TN]

= E
[
∥ΓZ − f ◦ g(Z)∥2

]
+ E

[
∥N∥2

]
(since Z ⊥ N and E[N] = 0)

(C.4)

From the above it is clear that R(f) ≥ E
[
∥N∥2

]
for all functions f : Rd → Rd. Since g−1 ∈ HΦ,

Γ ∈ HΘ and g−1(X) has all mutually independent components, Γ◦g−1 satisfies the constraints
in IC-ERM (2.3) and also achieves the lowest error possible, i.e., R(Γ ◦ g−1) = E[∥N∥2].
Consider any solution to constrained ERM in (2.3). The solution must satisfy the following
equality except over a set of measure zero.

Θ† ◦ Φ†(X) = ΓZ

=⇒ Φ†(X) = (Θ†)−1ΓZ
(C.5)

Let us call Φ†(X) = Z† and A = (Θ†)−1Γ. Hence, the above equality becomes Z† = AZ,
where all the components of Z† are independent (Eq: (2.3)) and all the components of Z are
independent (Assumption 2.2.1). We will now argue that the matrix A can be written as a
permutation matrix times a scaling matrix. We first show that in each column of A there is
exactly one non-zero element. Consider column k of A denoted as [A]k. Since A is invertible
all elements of the column cannot be zero. Now suppose at least two elements i and j of
[A]k are non-zero. Consider the corresponding components of Z†. Since Z†

i and Z†
j are both

independent and since [A]ik and [A]jk are both non-zero, from Darmois’ theorem [Darmois,
1953] it follows that Zk is a Gaussian random variable. However, this leads to a contradiction
as we assumed none of the random variables in Z follow a Gaussian distribution. Therefore,
exactly one element in [A]k is non-zero. We can say this about all the columns of A. No two
columns will have the same row with a non-zero entry or otherwise A would not be invertible.
Therefore, A can be expressed as a matrix permutation times a scaling matrix, where the
scaling takes care of the exact non-zero value in the row and the permutation matrix takes
care of the address of the element which is non-zero. This completes the proof.

C.3 Proof of Theorem 2.4.1: ERM-ICA (Case k=d)

Theorem 2.4.1. If Assumptions 2.2.1, 2.3.2 hold and the number of tasks k is equal to
the dimension of the latent d, then the solution Ω† ◦ Φ† to ERM-ICA ((2.4), (2.6)) with ℓ

90

Supplementary Material: Towards efficient representation identification in supervised
learning

as square loss for regression and cross-entropy loss for classification identifies true Z up to
permutation and scaling.

Proof. Although the initial half of the proof is identical to the proof of Theorem 2.3.3 we
repeat it for clarity. Consider we are in the regression setting for the data generation process
in Assumption 2.2.1. Therefore, using X ← g(Z) and Y ← ΓZ +N , the risk of a predictor f
can be written as follows:

R(f) = E
[
∥Y − f(X)∥2

]
= E

[
∥ΓZ +N − f ◦ g(Z)∥2

]
= E

[
∥ΓZ − f ◦ g(Z)∥2

]
+ E

[
∥N∥2

]
− 2 ∗ E[(ΓZ − f ◦ g(Z))TN]

= E
[
∥ΓZ − f ◦ g(Z)∥2

]
+ E

[
∥N∥2

]
(since Z ⊥ N and E[N] = 0)

(C.6)

From the above it is clear that R(f) ≥ E
[
∥N∥2

]
for all functions f : Rd → Rd. Since g−1 ∈ HΦ,

Γ ∈ HΘ and g−1(X) has all mutually independent components, Γ◦g−1 satisfies the constraints
in IC-ERM (2.3) and also achieves the lowest error possible, i.e., R(Γ ◦ g−1) = E[∥N∥2].

Consider any solution to ERM in (2.4). The solution must satisfy the following equality
except over a set of measure zero.

Θ† ◦ Φ†(X) = ΓZ

=⇒ Φ†(X) = (Θ†)−1ΓZ
(C.7)

Since Φ†(X) is a linear combination of independent latents with at least one latent non-
Gaussian (and also the latents have a finite second moment). We can use the result from
[Comon, 1994] that states Ω† that solves equation (2.6) relates to (Θ†)−1 as follows

(Ω†)−1 = (ΓPΛ)−1 = Λ−1P−1Γ−1 (C.8)

Substituting the above into (C.7) we get Φ†(X) = Λ−1P−1Γ−1ΓZ = Λ−1P−1Z. This com-
pletes the proof.

We can also carry out the same proof for the multi-task classification case. In multi-task
classification we can write the condition for optimality as

σ
(
Ω†Φ†(X)

)
= σ

(
ΓZ
)

(C.9)

where sigmoid is applied separately to each element, and since the sigmoids are equal, this

91

Supplementary Material: Towards efficient representation identification in supervised
learning

implies the individual elements are also equal. Therefore, Ω†Φ†(X) = ΓZ and we can use
the same analysis as the regression case from this point on. Also, note that we equated the
sigmoids in first place, because the LHS corresponds to p̂(Y |X) and RHS corresponds to true
p(Y |X).

C.4 Identification with fewer tasks than the la-

tent dimension

In this section, we study the setting when the number of tasks k is equal to one. Since
this setting is extreme, we need to make stronger assumptions to show latent identification
guarantees. Before we lay down the assumptions, we provide some notation. Since we only
have a single task, instead of using the matrix Γ ∈ Rk×d, we use γ ∈ Rd to signify the
coefficients that generate the label in the single task setting. We assume each component
of γ is non-zero. In the single task setting for regression problems, the label generation is
written as Y ← γTZ +NY , and the rest of the notation is the same as the data generation
process in Assumption 2.2.1. We rewrite the data generation process in Assumption 2.2.1 for
the single task case in terms of normalized variables U = Z ⊙ γ.

Assumption C.4.1. The data generation process for regressions is described as

Z ← h(NZ)

Y ← 1TU +NY ,

X ← g
′
(U),

(C.10)

where g′
(U) = g(U ⊙ 1

γ
), where U ⊙ 1

γ
= [U1

γ1
, · · · , Ud

γd
] . We assume that all the components

of U are mutually independent and identically distributed (i.i.d.).

Note that g′ is invertible since g is invertible and each element of γ is also non-zero. Hence,
for simplicity, we can deal with the identification of U . If we identify U up to permutation
and scaling, then Z is automatically identified up to permutation and scaling. The predictor
we learn is a composition of linear predictor θ and a representation Φ, which is written as
θ ◦ Φ(X) = θTΦ(X). The learner searches for θ in the set Hθ, where Hθ consists of linear
predictors with all non-zero components, and Φ in the set HΦ.

We can further simplify the predictor as follows: θTΦ(X) = 1T(Φ(X)⊙θ), where Φ(X)⊙θ
is component-wise multiplication expressed as Φ(X) ⊙ θ = [Φ1(X) ∗ θ1, · · · ,Φd(X) ∗ θd].
Therefore, instead of searching over Hθ such that all components of θ are non-zero, we can
fix Hθ = {1} and carry out the search over representations HΦ only. For the rest of the

92

Supplementary Material: Towards efficient representation identification in supervised
learning

section, without loss of generality, we assume the predictor is of the form 1 ◦Φ(X) = 1TΦ(X).
We restate the IC-ERM (2.3) with this parametrization and an additional constraint that
all components are now required to be independent and identically distributed (i.i.d.). We
provide a formal definition for the convenience of the reader below, where d

= denotes identical
in distribution.

Definition C.4.2. Independent & Identically Distributed (i.i.d.). A random vector
V = [V1, · · · , Vd] is said to be i.i.d. if 1) Vi(X)

d
= Vj(X) ∀i, j ∈ {1, · · · , d} 2) p({Vi}i∈M) =∏

i∈M p(Vi) ∀M ⊆ {1, · · · , d}.

The reparametrized IC-ERM (2.3) constraint is stated as follows.

min
Φ∈HΦ

R(1 ◦ Φ) s.t. Φ(X) is i.i.d. (Definition C.4.2) (C.11)

Next, we state the assumptions on each component of U (recall each component of U
is i.i.d. from Assumption C.4.1) and HΦ under which we show that the reparametrized
IC-ERM objective (equation (C.11)) recovers the true latent variables U up to permutations.
We assume each component of U is a continuous random variable with probability density
function (PDF) r. Define the support of each component of U as S = {u | r(u) > 0, u ∈ R}.
Define a ball of radius

√
2p as Bp = {u | |u|2 ≤ 2p2, u ∈ R}.

Assumption C.4.3. Each component of U is a continuous random variable from the
exponential family with probability density r. log(r) is a polynomial with degree p (where p
is odd) written as

log
(
r(u)

)
=

p∑
k=0

aku
k

where the absolute value of the coefficients of the polynomial are bounded by amax, i.e.,
|ak| ≤ amax for all k ∈ {1, · · · , p}, and the absolute value of the coefficient of the highest
degree term is at least amin, i.e., |ap| ≥ amin > 0. The support of r is sufficiently large that it
contains Bp, i.e., Bp ⊆ S. Also, the moment generation function of each component i of U ,
MUi

(t), exists for all t.

Remark on the PDFs under the above assumption. The above assumption con-
siders distributions in the exponential family, where the log-PDF can be expressed as a
polynomial. Note that as long as the support of the distribution is bounded, every polynomial
with bounded coefficients leads to a valid PDF (i.e., it integrates to one) and we only need to
set the value of a0 appropriately.

93

Supplementary Material: Towards efficient representation identification in supervised
learning

We now state our assumptions on the hypothesis class HΦ that the learner searches over.
Observe that Φ(X) can be written as h(U) = Φ

(
g

′
(U)
)

(since X = g
′
(U)). We write the

set of all the maps h constructed from composition of Φ ∈ HΦ and g
′ as HΦ ◦ g

′ . Define
w(u1, · · · , ud) = log

(∣∣det[J(h(u1, · · · , ud))]∣∣), where det is the determinant, J(h(u1, · · · , ud))
is the Jacobian of h computed at (u1, · · · , ud). The set of all the w’s obtained from all
h ∈ HΦ ◦ g

′ is denoted as W

Assumption C.4.4. HΦ consists of analytic bijections. For each Φ ∈ HΦ, the moment
generating function of each component i ∈ {1, · · · , d}, Φi(X), denoted as MΦi(X)(t) exists for
all t. Each w ∈ W is a finite degree polynomial with degree at most q, where the absolute
values of the coefficients in the polynomial are bounded by bmax.

Define pmin = max
{
κ log(8(d − 1)), 4amax(d−1)

amin
,
log

(
4bmax∗npoly

amin

)
2

+ q
}

, where npoly is the
maximum number of non-zero coefficients in any polynomial w ∈ W , κ is small constant (see
Appendix C.5).

Theorem C.4.5 (Single Task Case). If the Assumptions C.4.1, C.4.3, C.4.4 hold, (g′)−1 ∈
HΦ, and p is sufficiently large (p ≥ pmin), then the solution Φ†(X) of reparametrized IC-ERM
objective (C.11) recovers the true latent U in the data generation process in Asssumption
C.4.1 up to permutations.

Proof sketch. The complete proof is available in Appendix Section C.5 and we provide an
overview here. We use the optimality condition that the prediction made by the learned model,
1Th(U), exactly matches the true mean, 1TU , along with the constraints that each component
of U are i.i.d. and each component of h(U) are i.i.d., to derive that the distributions of
U and h(U) are the same. We substitute this condition in the change of variables formula
that relates the densities of U and h(U). Using the Assumption C.4.4, we can show that
if the highest absolute value of U and the highest absolute value of h(U) are not equal,
then the term with the highest absolute value among U and h(U) will dominate, leading to
contradiction in the identity obtained by change of variables formula. Based on this, we can
conclude that the highest absolute value of U and the highest absolute value of h(U) must
be equal. We iteratively apply this argument to show that all the absolute values of U and
h(U) are related by permutation. We can extend this argument to the actual values instead
of absolute values. Since h is analytic we argue that the relationship of permutation holds in
a neighborhood. Then we use properties of analytic functions [Mityagin, 2015] to conclude
that the relationship holds on the entire space.

Why does the bound on p grow linearly in d? We provide some geometric intuition
into why the degree of the polynomial (p) of the log-PDF (log(r)) needs to be large. If the

94

Supplementary Material: Towards efficient representation identification in supervised
learning

dimension of the latent space d is large, then the second term in pmin dominates, i.e., p has to
grow linearly in d. The simplification in the proof yields that the mapping h must satisfy
the following condition – ∥u∥k = ∥h(u)∥k for all k ∈ {1, · · · , p}, where ∥ · ∥k is the kth norm.
Hence, h is a bijection that preserves all norms up to the pth norm. If U is 2 dimensional, then
the a bijection h that preserves the ℓ1 norm and the ℓ2 norm is composed of permutations
and sign-flips. In general, since U is d dimensional, we need at least d constraints on h in the
form ∥u∥k = ∥h(u)∥k and thus p ≥ d, which ensure that the only map that satisfies these
constraints is composed of permutations and sign-flips.

Significance and remarks on Theorem C.4.5. Theorem C.4.5 shows that if we use
IC-ERM principle, i.e., constraint the representations to be independent, then we continue
to recover the latents even if the number of tasks is small. We can show that the above
theorem also extends to binary classification. We admit that strong assumptions were made
to arrive at the above result, while other assumptions such as bound on p growing linearly
in d seem necessary, but we would like to remind the reader that we are operating in the
extreme single task regime. In the previous section, when the number of tasks was equal to
the dimension of the latent (when we have sufficiently many tasks), we had shown the success
of the IC-ERM (2.3) objective (Theorem 2.3.3) for identification of latent variables with
much fewer assumptions. In contrast, in Theorem C.4.5, we saw that with more assumptions
on the distribution we can guarantee latent recovery with even one task. If we are in the
middle, i.e., when the number of tasks is between one and the dimension of the latent, then
the above Theorem C.4.5 says we only require the assumptions (Assumptions C.4.1, C.4.3,
C.4.4) to hold for at least one task.

Note on the case k>d: We did not discuss the case when the number of tasks is greater
than the dimension of the latent variables. This is because we can select a subset S ′ of tasks,
such that |S ′| = d and then proceed in a similar fashion as Theorem 2.3.3. This question
arises commonly in linear ICA literature, and selecting a subset of tasks is the standard
practice.

C.5 Proof of Theorem C.4.5: IC-ERM for the case

k=1

Theorem C.4.5 (Single Task Case). If the Assumptions C.4.1, C.4.3, C.4.4 hold, (g′)−1 ∈
HΦ, and p is sufficiently large (p ≥ pmin), then the solution Φ†(X) of reparametrized IC-ERM
objective (C.11) recovers the true latent U in the data generation process in Asssumption
C.4.1 up to permutations.

95

Supplementary Material: Towards efficient representation identification in supervised
learning

Proof. We write Φ†(X) = [Φ†
1(X), · · · ,Φ†

d(X)]. We call Φ†
i(X) = Vi and the vector

V = [V1, · · · , Vd] = [Φ†
1(X), · · · ,Φ†

d(X)].

Observe that since (g
′
)−1 ∈ HΦ, we can use the same argument used in the proof of Theo-

rem 2.3.3 to conclude that (g′
)−1 is a valid solution for the reparametrized IC-ERM objective

(Eq: (C.11)). Notice that the terms Θ† and Γ that appear in the proof of Theorem 2.3.3,
they are equal to identity here due to the Assumption C.4.1 and IC-ERM (C.11). Therefore,
following the standard argument in Theorem 2.3.3, we can conclude that any solution Φ†(X)

of reparametrized IC-ERM (C.11) satisfies the following:∑
i

Φ†
i (X) =

∑
i

(g
′
)−1
i (X)∑

i

Vi =
∑
i

Ui

(C.12)

We write the moment generation function of a random variable Ui as MUi
(t) = E[etUi].

We substitute the moment generating functions to get the following identity.

∑
i

Vi =
∑
i

Ui =⇒ ΠiMVi
(t) = ΠiMUi

(t) (C.13)

Since Ui
d
= Uj and Vi

d
= Vj , we can use MUi

(t) =MUj
(t) and MVi

(t) =MVj
(t) for all t ∈ R

and simplify as follows:(
MVi

(t)
)d

=
(
MUi

(t)
)d

=⇒ MVi
(t) =MUi

(t)

=⇒ Vi
d
= Ui,∀i ∈ {1, · · · , d}

(C.14)

In the second step of the above simplification, we use the fact that the moment generating
function is positive. In the third step, we use the fact that if moment generating functions
exist and are equal, then the random variables are equal in distribution [Feller, 2008]. Having
established that the distributions are equal, we now show that the random variables are equal
up to permutations.

Since the vector V is an invertible transform h of U , where V = h(U). We can write the
pdf of U in terms of V as follows.∏

i

p(ui) =
∏
i

p(vi)
∣∣det(J(h(u)))∣∣, (C.15)

where p corresponds to the pdf of Ui (recall that pdfs of all components is the same). We

96

Supplementary Material: Towards efficient representation identification in supervised
learning

take log on both sides of the above equation to get the following:∑
i

log(p(ui)) =
∑
i

log(p(vi)) + log
(∣∣det(J(h(u)))∣∣) (C.16)

From Assumption C.4.3, we substitute a polynomial for log(p(u)) =
∑p

k=0 aku
k. From

Assumption C.4.4, we express this log
(∣∣det(J(h(u)))∣∣) =

∑
bk
∏

i u
θk(i)
i . We substitute these

polynomials into the above equation to get the following:∑
i

log(p(ui))−
∑
i

log(p(vi))− log
(∣∣det(J(h))∣∣) = 0

=⇒
p∑

k=1

ak

d∑
i=1

(uki − vki)−
∑
m

bm
∏
i

u
θm(i)
i = 0

(C.17)

In the proof, we first focus on comparing the largest absolute value among u’s and largest
absolute value among v’s. Without loss of generality, we assume that |uj| > |ui| for all i ̸= j

(uj is the largest absolute value among u’s) and |vr| > |vi| for all i ̸= r (vr is the largest
absolute value among v’s). Consider the setting when |uj| ≥ p2 > 1 (these points exist in the
support because of the Assumption C.4.3). We can write |uj| = αp2, where α ≥ 1.

There are three cases to further consider:

a) |vr| > |uj|

b) |vr| < |uj|

c) |vr| = |uj|

We first start by analyzing the case b). Since all values of |vi| and |ui| are also strictly less
than |uj|, we have the following:

• ∃ c < 1 such that |ui| < cαp2 ∀ i ̸= j

• |vi| < cαp2 ∀ i ∈ {1, · · · , d}, where c < 1.

We divide the identity in equation (C.17) by upj and separate the terms in such a way
that only the term ap is in the LHS and the rest of the terms are pushed to the RHS. We

97

Supplementary Material: Towards efficient representation identification in supervised
learning

show further simplification of the identity below.

|ap| =
∣∣∣ap d−1∑

i=1

(upi
upj
− vpi
upj

)
+

p−1∑
k=1

ak

d∑
i=1

(uki
upj
− vki
upj

)
−
∑
m

bm
1

upj

∏
i

u
θm(i)
i

∣∣∣
=⇒ |ap| ≤

∣∣∣ap d−1∑
i=1

(upi
upj
− vpi
upj

)∣∣∣+ ∣∣∣ p−1∑
k=1

ak

d∑
i=1

(uki
upj
− vki
upj

)∣∣∣+ ∣∣∣∑
m

bm
1

upj

∏
i

u
θm(i)
i

∣∣∣
=⇒ 1 ≤ 1

|ap|

(∣∣∣ap d−1∑
i=1

(upi
upj
− vpi
upj

)∣∣∣+ ∣∣∣ p−1∑
k=1

ak

d∑
i=1

(uki
upj
− vki
upj

)∣∣∣+ ∣∣∣∑
m

bm
1

upj

∏
i

u
θm(i)
i

∣∣∣)
(C.18)

We analyze each of the terms in the RHS separately. The simplification of the first term
yields the following expression.

1

|ap|

∣∣∣ap d−1∑
i=1

(upi
upj
− vpi
upj

)∣∣∣ ≤ 1

|ap|

∣∣∣ap∣∣∣ d−1∑
i=1

(∣∣∣upi
upj

∣∣∣+ ∣∣∣vpi
upj

∣∣∣)
≤ 2cp(d− 1)

(C.19)

The simplification of the second term in the RHS of the last equation in (C.18) yields the
following expression.

1

|ap|

∣∣∣ p−1∑
k=1

ak

d∑
i=1

(uki
upj
− vki
upj

)∣∣∣ ≤ 1

|ap|

p−1∑
k=1

|ak|
d∑

i=1

(∣∣∣uki
upj

∣∣∣+ ∣∣∣vki
upj

)∣∣∣
≤

p−1∑
k=1

2|ak|
d∑

i=1

(∣∣∣ukj
upj

∣∣∣)∣∣∣
≤ 1

|ap|

(p−1∑
k=1

2|ak|(d− 1)
) 1

αp2

≤ 2amax(d− 1)

aminp

(C.20)

The simplification of the third term in the RHS of the last equation in (C.18) yields the
following expression.

1

|ap|

∣∣∣∑
m

bm
1

upj

∏
i

u
θm(i)
i

∣∣∣ ≤∑
m

|bm|
1

|uj|(p−q)

≤ bmax

amin

npoly

(αp2)(p−q)

(C.21)

where npoly corresponds to the number of non-zero terms in the polynomial expansion of

98

Supplementary Material: Towards efficient representation identification in supervised
learning

the log-determinant. In the above simplification, we used the fact that
∑

i θm(i) ≤ q and
|ui| < |uj|. Analyzing the RHS in equations (C.19)-(C.21), we see that if p becomes sufficiently
large, the RHS becomes less than 1. This contradicts the relationship in equation (C.18).
Therefore, all |vi| cannot be strictly less than |ui|. This rules out case b).

We now derive the bounds on the value of p as follows. Assume p ≥ 2q, i.e., the degree of
the log-pdf of each component of U is at least twice the degree of the log-determinant of the
Jacobian of h.

From the equation (C.19) we get the following bound on p

2cp(d− 1) ≤ 1

4

=⇒ 8(d− 1) ≤ 1

cp

=⇒ log(8(d− 1)) ≤ p log(
1

c
)

=⇒ p ≥ log(8(d− 1))

log(1
c
)

(C.22)

From the equation (C.20) we get the following bound on p

amax(d− 1)

aminp
≤ 1

4
=⇒ p ≥ 4amax(d− 1)

amin

(C.23)

From the equation (C.21) we get the following bound on p

bmax

|ap|
npoly

(αp2)(p−q)
≤ 1

4

=⇒ log
(4bmaxnpoly

|ap|

)
≤ 2(p− q) log p

=⇒ p ≥
log
(

4bmaxnpoly

amin

)
2

+ q

(C.24)

From the above equations (C.22), (C.23), and (C.24), we get that if

p ≥ max
{ log(8(d− 1))

log(1
c
)

,
4amax(d− 1)

amin
,
log
(

4bmaxnpoly

amin

)
2

+ q
}

(C.25)

99

Supplementary Material: Towards efficient representation identification in supervised
learning

then the sum of the terms in the RHS in equation (C.18) is at most 3
4

and the term in the
LHS in equation (C.18) is 1, which leads to a contradiction.

From the above expression, we gather that the second and third term should dominate in
determining the lower bound for p. From the second term, we gather that the lower bound
increases linearly in the dimension of the latent, and from the third term we gather that p
must be greater than q by a factor that grows logarithmically in the number of terms in the
polynomial of the log determinant.

Let us now consider the case a) (|vr| > |uj|) which is similar to the case b) analyzed above.
Since values of |ui| are strictly less than |uj| and |vr|, and since |vr| > |uj|, there exist a c < 1

such that |ui| ≤ cαp2, |vr| ≥ 1
c
αp2, |vi| ≤ c|vr|, where c < 1. We follow the same steps as

done in the analysis for case b). We separate the equation so that only the term ap (obtained
by dividing vpr with vpr) is in the LHS and the rest on the RHS.

|ap| =
∣∣∣ap d−1∑

i=1

(upi
vpr
− vpi
vpr

)
+

p−1∑
k=1

ak

d∑
i=1

(uki
vpr
− vki
vpr

)
−
∑
m

bm
1

vpr

∏
i

u
θm(i)
i

∣∣∣
=⇒ |ap| ≤

∣∣∣ap d−1∑
i=1

(upi
vpr
− vpi
vpr

)∣∣∣+ ∣∣∣ p−1∑
k=1

ak

d∑
i=1

(uki
vpr
− vki
vpr

)∣∣∣+ ∣∣∣∑
m

bm
1

upj

∏
i

u
θm(i)
i

∣∣∣
=⇒ 1 ≤ 1

|ap|

(∣∣∣ap d−1∑
i=1

(upi
vpr
− vpi
vpr

)∣∣∣+ ∣∣∣ p−1∑
k=1

ak

d∑
i=1

(uki
vpr
− vki
vpr

)∣∣∣+ ∣∣∣∑
m

bm
1

vpr

∏
i

u
θm(i)
i

∣∣∣)
(C.26)

We analyze each of the terms in the RHS in equation (C.26) separately. The simplification
of the first term in the RHS of the above yields the following upper bound.

1

|ap|

∣∣∣ap d−1∑
i=1

(upi
vpr
− vpi
vpr

)∣∣∣ ≤ 1

|ap|

∣∣∣ap∣∣∣ d−1∑
i=1

(∣∣∣upi
vpr

∣∣∣+ ∣∣∣vpi
vpr

∣∣∣)
≤ 2cp(d− 1)

(C.27)

The simplification of the second term in the RHS of equation (C.26) yields the following
upper bound.

100

Supplementary Material: Towards efficient representation identification in supervised
learning

1

|ap|

∣∣∣ p−1∑
k=1

ak

d∑
i=1

(uki
vpr
− vki
vpr

)∣∣∣ ≤ 1

|ap|

p−1∑
k=1

|ak|
d∑

i=1

(∣∣∣uki
vpr

∣∣∣+ ∣∣∣vki
vpr

)∣∣∣
≤

p−1∑
k=1

2|ak|
d∑

i=1

(∣∣∣ukj
vpr

∣∣∣)∣∣∣
≤ 1

|ap|

(p−1∑
k=1

2|ak|(d− 1)
) 1

αp2

≤ amax(d− 1)c

|ap|αp

≤ amax(d− 1)

aminp

(C.28)

The simplification of the third term in the RHS of equation (C.26) yields the following
upper bound.

1

|ap|

∣∣∣∑
m

bm
1

vpr

∏
i

u
θm(i)
i

∣∣∣ ≤∑
m

|bm|
1

|vr|(p−q)

≤ bmax

|ap|

npoly

(
cp−q

)
(αp2)(p−q)

≤ bmax

|ap|
npoly

(αp2)(p−q)

(C.29)

Analyzing the RHS in equation (C.27)-(C.29), we see that if p becomes sufficiently large
then the RHS becomes less than 1. This contradicts the relationship in equation (C.26).
Therefore, there is no |vi| that is strictly larger than |ui|. This rules out case a). In fact from
equations (C.27)-(C.29) we can get the same bound on p as in case b).

Thus, the only possibility is case c), i.e., |vr| = |uj| =⇒ vr = uj or vr = −uj. Consider
the case when p is odd. In that case, vr = uj is the only option that works. We substitute
vr = uj in the equation (C.18) and repeat the same argument for the second highest absolute
value, and so on. This leads to the conclusion that for each component u there is a component
of v such that both of them are equal. Hence, we have established the relationship vr = uj.
For another sample where index j corresponds to the highest absolute value and is in the
neighbourhood of uj , the relationship vr = uj must continue to hold. If this does not happen,
then there would be another component vq = uj where q ̸= r. However, if that were the case,
then it would contradict the continuity of h.

Therefore, the relationship vr = uj (the match between index j for u and index r for v)
holds for a neighbourhood of values of vector u. Since each component of h is analytic, we

101

Supplementary Material: Towards efficient representation identification in supervised
learning

can use the fact that the neighbourhood of vector of values of u for which the relationship
vr = uj holds has a positive measure, and then from [Mityagin, 2015] it follows that this
relationship would hold on the entire space. We can draw the same conclusion for all the
components of h and conclude that h is a permutation map.

C.6 Experiments: Implementation Details

Model Architecture

• Fully Connected Layer: (Data Dim, 100)

• BatchNormalization(100)

• LeakyReLU(0.5)

• Full Connected Layer: (100, Data Dim)

• BatchNormalization(Data Dim)

• LeakyReLU(0.5)

• Fully Connected Layer: (Data Dim, Total Tasks)

We consider the part of the network before the final fully connected layer as the represen-
tation network, and use the output from the representation network for training ICA/PCA
after the ERM step.

Hyperparameters We use SGD to train all the methods with the different hyperpa-
rameters across each task mentioned below. In every case, we select the best model during
the course of training based on the validation loss, and also use a learning rate scheduler that
reduces the existing learning rate by half after every 50 epochs. Also, regarding ICA, we use
the FastICA solver in sklearn with 30, 000 maximum iterations and data whitening.

• Regression: Learning Rate: 0.01, Batch Size: 512, Total Epochs: 1000, Weight
Decay: 5e− 4, Momentum: 0.9

• Classification: Learning Rate: 0.05, Batch Size: 512, Total Epochs: 200, Weight
Decay: 5e− 4, Momentum: 0.9

102

Appendix D

Supplementary Material: Additive

Decoders for Latent Variables

Identification and

Cartesian-Product Extrapolation

g
∣∣
A

Restriction of g to the set A
Dg Jacobian of g
D2g Hessian of g

B ⊆ [n] Subset of indices
|B| Cardinality of the set B
xB Vector formed with the ith coordinates of x, for all i ∈ B

XB,B′ Matrix formed with the entries (i, j) ∈ B ×B′ of X.
Given X ⊆ Rn, XB := {xB | x ∈ X} (projection of X)

B A partition of [dz] (assumed contiguous w.l.o.g.)
B ∈ B A block of the partition B

B(i) ∈ B The unique block of B that contains i
π : [dz]→ [dz] A permutation

SB :=
⋃

B∈B B
2

Sc
B := [dz]

2 \ SB
Rdz×dz

SB
:= {M ∈ Rdz×dz | (i, j) ̸∈ SB =⇒ Mi,j = 0}

X Closure of the subset X ⊆ Rn in the standard topology of Rn

X ◦ Interior of the subset X ⊆ Rn in the standard topology of Rn

Table D.1: Recurrent notations specific to this chapter.

103

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

D.1 Identifiability and Extrapolation Analysis

D.1.1 Useful definitions and lemmas

We start by recalling some notions of general topology that are going to be used later on.
For a proper introduction to these concepts, see for example Munkres [2000].

Definition D.1.1 (Regularly closed sets). A set Z ⊆ Rdz is regularly closed if Z = Z◦, i.e.
if it is equal to the closure of its interior (in the standard topology of Rn).

Definition D.1.2 (Connected sets). A set Z ⊆ Rdz is connected if it cannot be written as a
union of non-empty and disjoint open sets (in the subspace topology).

Definition D.1.3 (Path-connected sets). A set Z ⊆ Rdz is path-connected if for all pair
of points z0, z1 ∈ Z, there exists a continuous map ϕ : [0, 1]→ Z such that ϕ(0) = z0 and
ϕ(1) = z1. Such a map is called a path between z0 and z1.

Definition D.1.4 (Homeomorphism). Let A and B be subsets of Rn equipped with the
subspace topology. A function f : A→ B is an homeomorphism if it is bijective, continuous
and its inverse is continuous.

The following technical lemma will be useful in the proof of Theorem 3.4.4. For it, we
will need additional notation: Let S ⊂ A ⊂ Rn. We already saw that S refers to the closure
S in the Rn topology. We will denote by clA(S) the closure of S in the subspace topology of
A induced by Rn, which is not necessarily the same as S. In fact, both can be related via
clA = S ∩ A (see Munkres [2000, Theorem 17.4, p.95]).

Lemma D.1.5. Let A,B ⊂ Rn and suppose there exists an homeomorphism f : A→ B. If
A is regularly closed in Rn, we have that B ⊂ B◦.

Proof. Note that f
∣∣
A◦ is a continuous injective function from the open set A◦ to f(A◦). By

the “invariance of domain” theorem [Munkres, 2000, p.381], we have that f(A◦) must be open
in Rn. Of course, we have that f(A◦) ⊂ B, and thus f(A◦) ⊂ B◦ (the interior of B is the
largest open set contained in B). Analogously, f−1

∣∣
B◦ is a continuous injective function from

the open set B◦ to f−1(B◦). Again, by “invariance of domain”, f−1(B◦) must be open in Rn

and thus f−1(B◦) ⊂ A◦. We can conclude that f(A◦) = B◦, as shown below:

B = f(A) = f(A◦) = f(A◦ ∩ A) = f(clA(A◦)) ⊆ clB(f(A◦)) = clB(B◦) = B◦ ∩B ⊂ B◦ ,

where the first inclusion holds by continuity of f [Munkres, 2000, Thm.18.1 p.104].

104

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

Lemma D.1.6 (Sparsity pattern of an invertible matrix contains a permutation). Let
L ∈ Rm×m be an invertible matrix. Then, there exists a permutation σ such that Li,σ(i) ̸= 0

for all i.

Proof. This lemma is taken from Lachapelle et al. [2022b]. Since the matrix L is invertible,
its determinant is non-zero, i.e.

det(L) :=
∑
π∈Sm

sign(π)
m∏
i=1

Li,π(i) ̸= 0 , (D.1)

where Sm is the set of m-permutations. This equation implies that at least one term of the
sum is non-zero, meaning there exists π ∈ Sm such that for all i ∈ [m], Li,π(i) ̸= 0.

Definition D.1.7 (Aligned subspaces of Rm×n). Given a subset S ⊂ {1, ...,m} × {1, ..., n},
we define

Rm×n
S := {M ∈ Rm×n | (i, j) ̸∈ S =⇒ Mi,j = 0} . (D.2)

Definition D.1.8 (Useful sets). Given a partition B of [d], we define

SB :=
⋃
B∈B

B2 Sc
B := {1, . . . , dz}2 \ SB (D.3)

Definition D.1.9 (Ck-diffeomorphism). Let A ⊆ Rn and B ⊆ Rm. A map f : A → B is
said to be a Ck-diffeomorphism if it is bijective, C2 and has a C2 inverse.

Remark D.1.10. Differentiability is typically defined for functions that have an open domain
in Rn. However, in the definition above, the set A might not be open in Rn and B might not
be open in Rm. In the case of an arbitrary domain A, it is customary to say that a function
f : A ⊆ Rn → Rm is Ck if there exists a Ck function g defined on an open set U ⊆ Rn

that contains A such that g
∣∣
A
= f (i.e. g extends f). With this definition, we have that a

composition of Ck functions is Ck, as usual. See for example p.199 of Munkres [1991].

The following lemma allows us to unambiguously define the k first derivatives of a Ck

function f : A→ Rm on the set A◦.

Lemma D.1.11. Let A ⊂ Rn and f : A→ Rm be a Ck function. Then, its k first derivatives
is uniquely defined on A◦ in the sense that they do not depend on the specific choice of Ck

extension.

105

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

Proof. Let g : U → Rn and h : V → Rn be two Ck extensions of f to U ⊂ Rn and V ⊂ Rn

both open in Rn. By definition,

g(x) = f(x) = h(x), ∀x ∈ A . (D.4)

The usual derivative is uniquely defined on the interior of the domain, so that

Dg(x) = Df(x) = Dh(x), ∀x ∈ A◦ . (D.5)

Consider a point x0 ∈ A◦. By definition of closure, there exists a sequence {xk}∞k=1 ⊂ A◦ s.t.
limk→∞ xk = x0. We thus have that

lim
k→∞

Dg(xk) = lim
k→∞

Dh(xk) (D.6)

Dg(x0) = Dh(x0) , (D.7)

where we used the fact that the derivatives of g and h are continuous to go to the second
line. Thus, all the Ck extensions of f must have equal derivatives on A◦. This means we can
unambiguously define the derivative of f everywhere on A◦ to be equal to the derivative of
one of its Ck extensions.

Since f is Ck, its derivative Df is Ck−1, we can thus apply the same argument to get
that the second derivative of f is uniquely defined on A◦◦. It can be shown that A◦◦ = A◦.
One can thus apply the same argument recursively to show that the first k derivatives of f
are uniquely defined on A◦.

Definition D.1.12 (Ck-diffeomorphism onto its image). Let A ⊆ Rn. A map f : A→ Rm is
said to be a Ck-diffeomorphism onto its image if the restriction f to its image f̃ : A→ f(A)

is a Ck-diffeomorphism.

Remark D.1.13. If S ⊆ A ⊆ Rn and f : A→ Rm is a Ck-diffeomorphism on its image, then
the restriction of f to S, i.e. f

∣∣
S
, is also a Ck diffeomorphism on its image. That is because

f
∣∣
S

is clearly bijective, is Ck (simply take the Ck extension of f) and so is its inverse (simply
take the Ck extension of f−1).

D.1.2 Proof of Theorem 3.4.4: Local Disentanglement

Theorem 3.4.4 (Local disentanglement via additive decoders). Given the data generation
process (Assumption 3.3.1) and the optimal solution (f̂ , ĝ) under the reconstruction loss,
along with the extra assumptions stated below:

106

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

• Both true decoder g and learned ĝ are additive functions (Definition 3.3.2)

• Learned decoder ĝ is a C2-diffeomorphism, the learned encoder f̂ is continuous

• True deoder g is sufficiently nonlinear as formalized by Assumption 3.4.5

Then we have that ĝ is locally B-disentangled w.r.t. g (Definition 3.4.3) .

Proof. Note that under the optimal solution to reconstruction objective (Appendix B.3), we
can define the map v := g−1 ◦ ĝ, which is a C2-diffeomorphism from Ẑtrain to Ztrain. This
allows one to write

g ◦ v(z) = ĝ(z) ∀z ∈ Ẑtrain (D.8)∑
B∈B

g(B)(vB(z)) =
∑
B∈B

ĝ(B)(zB) ∀z ∈ Ẑtrain . (D.9)

Since Ztrain is regularly closed and is diffeomorphic to Ẑtrain, by Lemma D.1.5, we must
have that Ẑtrain ⊂ (Ẑtrain)◦. Moreover, the left and right hand side of (D.9) are C2, which
means they have uniquely defined first and second derivatives on (Ẑtrain)◦ by Lemma D.1.11.
This means the derivatives are uniquely defined on Ẑtrain.

Let z ∈ Ẑtrain. Choose some J ∈ B and some j ∈ J . Differentiate both sides of the above
equation with respect to zj, which yields:∑

B∈B

∑
i∈B

Dig
(B)(vB(z))Djvi(z) = Dj ĝ

(J)(zJ) . (D.10)

Choose J ′ ∈ B \ {J} and j′ ∈ J ′. Differentiating the above w.r.t. zj′ yields

∑
B∈B

∑
i∈B

[
Dig

(B)(vB(z))D
2
j,j′vi(z) +

∑
i′∈B

D2
i,i′g

(B)(vB(z))Dj′vi′(z)Djvi(z)

]
= 0

∑
B∈B

[∑
i∈B

[
Dig

(B)(vB(z))D
2
j,j′vi(z) +D2

i,ig
(B)(vB(z))Dj′vi(z)Djvi(z)

]
+

∑
(i,i′)∈B2

<

D2
i,i′g

(B)(vB(z))(Dj′vi′(z)Djvi(z) +Dj′vi(z)Djvi′(z))

]
= 0 , (D.11)

where B2
< := B2 ∩ {(i, i′) | i′ < i}. For the sake of notational conciseness, we are going to

refer to SB and Sc
B as S and Sc (Definition D.1.8). Also, define

S< :=
⋃
B∈B

B2
< . (D.12)

107

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

Let us define the vectors

∀i ∈ {1, ...dz}, a⃗i(z) := (D2
j,j′vi(z))(j,j′)∈Sc (D.13)

∀i ∈ {1, ...dz}, b⃗i(z) := (Dj′vi(z)Djvi(z))(j,j′)∈Sc (D.14)

∀B ∈ B, ∀(i, i′) ∈ B2
<, c⃗i,i′(z) := (Dj′vi′(z)Djvi(z) +Dj′vi(z)Djvi′(z))(j,j′)∈Sc (D.15)

This allows us to rewrite, for all k ∈ {1, ..., dx}

∑
B∈B

∑
i∈B

[
Dig

(B)
k (vB(z))⃗ai(z) +D2

i,ig
(B)
k (vB(z))⃗bi(z)

]
+

∑
(i,i′)∈B2

<

D2
i,i′g

(B)
k (vB(z))c⃗i,i′(z)

 = 0 .

(D.16)

We define

w(z, k) := ((Dig
(B)
k (zB))i∈B, (D

2
i,ig

(B)
k (zB))i∈B, (D

2
i,i′g

(B)
k (zB))(i,i′)∈B2

<
)B∈B (D.17)

M(z) := [[⃗ai(z)]i∈B, [⃗bi(z)]i∈B, [⃗ci,i′(z)](i,i′)∈B2
<
]B∈B , (D.18)

which allows us to write, for all k ∈ {1, ..., dz}

M(z)w(v(z), k) = 0 . (D.19)

We can now recognize that the matrix W (v(z)) of Assumption 3.4.5 is given by

W (v(z))⊤ = [w(v(z), 1) . . . w(v(z), dx)] (D.20)

which allows us to write

M(z)W (v(z))⊤ = 0 (D.21)

W (v(z))M(z)⊤ = 0 (D.22)

Since W (v(z)) has full column-rank (by Assumption 3.4.5 and the fact that v(z) ∈ Ztrain),
there exists q rows that are linearly independent. Let K be the index set of these rows. This
means W (v(z))K,· is an invertible matrix. We can thus write

W (v(z))K,·M(z)⊤ = 0 (D.23)

(W (v(z))K,·)
−1W (v(z))K,·M(z)⊤ = (W (v(z))K,·)

−10 (D.24)

M(z)⊤ = 0 , (D.25)

108

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

which means, in particular, that, ∀i ∈ {1, . . . , dz}, b⃗i(z) = 0, i.e.,

∀i ∈ {1, . . . , dz},∀(j, j′) ∈ Sc, Djvi(z)Dj′vi(z) = 0 (D.26)

Since the v is a diffeomorphism, its Jacobian matrix Dv(z) is invertible everywhere. By
Lemma D.1.6, this means there exists a permutation π such that, for all j, Djvπ(j)(z) ̸= 0.
This and (D.26) imply that

∀(j, j′) ∈ Sc, Djvπ(j′)(z)Dj′vπ(j′)(z)︸ ︷︷ ︸
̸=0

= 0, (D.27)

=⇒ ∀(j, j′) ∈ Sc, Djvπ(j′)(z) = 0 . (D.28)

To show that Dv(z) is a B-block permutation matrix, the only thing left to show is that π
respects B. For this, we use the fact that, ∀B ∈ B,∀(i, i′) ∈ B2

<, c⃗i,i′(z) = 0 (recall M(z) = 0).
Because c⃗i,i′(z) = c⃗i′,i(z), we can write

∀(i, i′) ∈ S s.t. i ̸= i′,∀(j, j′) ∈ Sc, Dj′vi′(z)Djvi(z) +Dj′vi(z)Djvi′(z) = 0 . (D.29)

We now show that if (j, j′) ∈ Sc (indices belong to different blocks), then (π(j), π(j′)) ∈ Sc

(they also belong to different blocks). Assume this is false, i.e. there exists (j0, j
′
0) ∈ Sc such

that (π(j0), π(j
′
0)) ∈ S. Then we can apply (D.29) (with i := π(j0) and i′ := π(j′0)) and get

Dj′0
vπ(j′0)(z)Dj0vπ(j0)(z)︸ ︷︷ ︸

̸=0

+Dj′0
vπ(j0)(z)Dj0vπ(j′0)(z) = 0 , (D.30)

where the left term in the sum is different of 0 because of the definition of π. This implies
that

Dj′0
vπ(j0)(z)Dj0vπ(j′0)(z) ̸= 0 , (D.31)

otherwise (D.30) cannot hold. But (D.31) contradicts (D.28). Thus, we have that,

(j, j′) ∈ Sc =⇒ (π(j), π(j′)) ∈ Sc . (D.32)

109

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

The contraposed is

(π(j), π(j′)) ∈ S =⇒ (j, j′) ∈ S (D.33)

(j, j′) ∈ S =⇒ (π−1(j), π−1(j′)) ∈ S . (D.34)

From the above, it is clear that π−1 respects B which implies that π respects B (Lemma D.1.14).
Thus Dv(z) is a B-block permutation matrix.

Lemma D.1.14 (B-respecting permutations form a group). Let B be a partition of {1, . . . , dz}
and let π and π̄ be a permutation of {1, . . . , dz} that respect B. The following holds:

1. The identity permutation e respects B.

2. The composition π ◦ π̄ respects B.

3. The inverse permutation π−1 respects B.

Proof. The first statement is trivial, since for all B ∈ B, e(B) = B ∈ B.
The second statement follows since for all B ∈ B, π̄(B) ∈ B and thus π(π̄(B)) ∈ B.
We now prove the third statement. Let B ∈ B. Since π is surjective and respects B, there

exists a B′ ∈ B such that π(B′) = B. Thus, π−1(B) = π−1(π(B′)) = B′ ∈ B.

D.1.3 Sufficient nonlinearity v.s. sufficient variability in

nonlinear ICA with auxiliary variables

In Section 3.4.1, we introduced the “sufficient nonlinearity” condition (Assumption 3.4.5)
and highlighted its resemblance to the “sufficient variability” assumptions often found in
the nonlinear ICA literature [Hyvärinen and Morioka, 2016, 2017, Hyvärinen et al., 2019,
Khemakhem et al., 2020b,c, Lachapelle et al., 2022b, Zheng et al., 2022]. We now clarify
this connection. To make the discussion more concrete, we consider the sufficient variability
assumption found in Hyvärinen et al. [2019]. In this work, the latent variable z is assumed
to be distributed according to

p(z | u) :=
dz∏
i=1

pi(zi | u) (D.35)

110

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

In other words, the latent factors zi are mutually conditionally independent given an observed
auxiliary variable u. Define

w(z, u) :=

((
∂

∂zi
log pi(zi | u)

)
i∈[dz]

(
∂2

∂z2i
log pi(zi | u)

)
i∈[dz]

)
∈ R2dz (D.36)

We now recall the assumption of sufficient variability of Hyvärinen et al. [2019]:

Assumption D.1.15 (Assumption of variability from Hyvärinen et al. [2019, Theorem 1]).
For any z ∈ Rdz , there exists 2dz + 1 values of u, denoted by u(0), u(1), . . . , u(2dz) such that
the 2dz vectors

w(z, u(1))− w(z, u(0)), . . . , w(z, u(2dz))− w(z, u(0)) (D.37)

are linearly independent.

To emphasize the resemblance with our assumption of sufficient nonlinearity, we rewrite
it in the special case where the partition B := {{1}, . . . , {dz}}. Note that, in that case,
q := dz +

∑
B∈B

|B|(|B|+1)
2

= 2dz.

Assumption D.1.16 (Sufficient nonlinearity (trivial partition)). For all z ∈ Ztrain, g is such
that the following matrix has independent columns (i.e. full column-rank):

W (z) :=
[[
Dig

(i)(zi)
]
i∈[dz]

[
D2

i,ig
(i)(zi)

]
i∈[dz]

]
∈ Rdx×2dz (D.38)

One can already see the resemblance between Assumptions D.1.15 & D.1.16, e.g. both
have something to do with first and second derivatives. To make the connection even more
explicit, define w(z, k) to be the kth row of W (z) (do not conflate with w(z, u)). Also, recall
the basic fact from linear algebra that the column-rank is always equal to the row-rank.
This means that W (z) is full column-rank if and only if there exists k1, ..., k2dz ∈ [dx]

such that the vectors w(z, k1), . . . , w(z, k2dz) are linearly independent. It is then easy to see
the correspondance between w(z, k) and w(z, u)− w(z, u(0)) (from Assumption D.1.15) and
between the pixel index k ∈ [dx] and the auxiliary variable u.

We now look at why Assumption 3.4.5 is likely to be satisfied when dx >> dz. Informally,
one can see that when dx is much larger than 2dz, the matrix W (z) has much more rows
than columns and thus it becomes more likely that we will find 2dz rows that are linearly
independent, thus satisfying Assumption 3.4.5.

To further highlight the importance of this assumption, we study the following example
that shows why Theorem 3.4.4 does not apply if the ground-truth decoder g is linear. If

111

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

that was the case, it would contradict the well known fact that linear ICA with independent
Gaussian factors is unidentifiable.

Example D.1.17 (Importance of Assumption 3.4.5). Suppose x = g(z) = Az where
A ∈ Rdx×dz is full rank. Take ĝ(z) := AV z and f̂(x) := V −1A†x where V ∈ Rdz×dz is invertible
and A† is the left pseudo inverse of A. By construction, we have that E[x− ĝ(f̂(x))] = 0 and g
and ĝ are B-additive because g(z) =

∑
B∈B A·,BzB and ĝ(z) =

∑
B∈B(AV)·,BzB. However, we

still have that v(z) := g−1 ◦ ĝ(z) = V z where V does not necessarily have a block-permutation
structure, i.e. no disentanglement. The reason we cannot apply Theorem 3.4.4 here is because
Assumption 3.4.5 is not satisfied. Indeed, the second derivatives of g(B)(zB) := A·,BzB are all
zero and hence W (z) cannot have full column-rank.

D.1.4 Proof of Theorem 3.4.6: Global Disentanglement

We start with a simple definition:

Definition D.1.18 (B-block permutation matrices). A matrix A ∈ Rd×d is a B-block
permutation matrix if it is invertible and can be written as A = CPπ where Pπ is the
matrix representing the B-respecting permutation π (Pπei = eπ(i)) and C ∈ Rd×d

SB
(See

Definitions D.1.7 & D.1.8).

The following technical lemma leverages continuity and path-connectedness to show that
the block-permutation structure must remain the same across the whole domain. It can be
skipped at first read.

Lemma D.1.19. Let C be a connected topological space and let M : C → Rd×d be a
continuous function. Suppose that, for all c ∈ C, M(c) is an invertible B-block permutation
matrix (Definition D.1.18). Then, there exists a B-respecting permutation π such that for all
c ∈ C and all distinct B,B′ ∈ B, M(c)π(B′),B = 0.

Proof. The reason this result is not trivial, is that, even if M(c) is a B-block permutation for
all c, the permutation might change for different c. The goal of this lemma is to show that, if
C is connected and the map M(·) is continuous, then one can find a single permutation that
works for all c ∈ C.

First, since C is connected and M is continuous, its image, M(C), must be connected (by
[Munkres, 2000, Theorem 23.5]).

Second, from the hypothesis of the lemma, we know that

M(C) ⊂ A :=

 ⋃
π∈S(B)

Rd×d
SB

Pπ

 \ {singular matrices} , (D.39)

112

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

where S(B) is the set of B-respecting permutations and Rd×d
SB

Pπ = {MPπ |M ∈ Rd×d
SB
}. We

can rewrite the set A above as

A =
⋃

π∈S(B)

(
Rd×d

SB
Pπ \ {singular matrices}

)
, (D.40)

We now define an equivalence relation ∼ over B-respecting permutation: π ∼ π′ iff for all
B ∈ B, π(B) = π′(B). In other words, two B-respecting permutations are equivalent if they
send every block to the same block (note that they can permute elements of a given block
differently). We notice that

π ∼ π′ =⇒ Rd×d
SB

Pπ = Rd×d
SB

Pπ′ . (D.41)

Let S(B)/ ∼ be the set of equivalence classes induce by ∼ and let Π stand for one such
equivalence class. Thanks to (D.41), we can define, for all Π ∈ S(B)/ ∼, the following set:

VΠ := Rd×d
SB

Pπ \ {singular matrices}, for some π ∈ Π , (D.42)

where the specific choice of π ∈ Π is arbitrary (any π′ ∈ Π would yield the same definition,
by (D.41)). This construction allows us to write

A =
⋃

Π∈S(B)/∼

VΠ , (D.43)

We now show that {VΠ}Π∈S(B)/∼ forms a partition of A. Choose two distinct equivalence
classes of permutations Π and Π′ and let π ∈ Π and π′ ∈ Π′ be representatives. We note that

Rd×d
SB

Pπ ∩ Rd×d
SB

Pπ′ ⊂ {singular matrices} , (D.44)

since any matrix that is both in Rd×d
SB

Pπ and Rd×d
SB

Pπ′ must have at least one row filled with
zeros. This implies that

VΠ ∩ VΠ′ = ∅ , (D.45)

which shows that {VΠ}Π∈S(B)/∼ is indeed a partition of A.
Each VΠ is closed in A (wrt the relative topology) since

VΠ = Rd×d
SB

Pπ \ {singular matrices} = A ∩ Rd×d
SB

Pπ︸ ︷︷ ︸
closed in Rd×d

. (D.46)

113

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

Moreover, VΠ is open in A, since

VΠ = A \
⋃

Π′ ̸=Π

VΠ′

︸ ︷︷ ︸
closed in A

. (D.47)

Thus, for any Π ∈ S(B)/ ∼, the sets VΠ and
⋃

Π′ ̸=Π VΠ′ forms a separation (see [Munkres,
2000, Section 23]). Since M(C) is a connected subset of A, it must lie completely in VΠ or⋃

Π′ ̸=Π VΠ′ , by [Munkres, 2000, Lemma 23.2]. Since this is true for all Π, it must follow that
there exists a Π∗ such that M(C) ⊂ VΠ∗ , which completes the proof.

Theorem 3.4.6 (Global disentanglement via additive decoders). Suppose that all the as-
sumptions of Theorem 3.4.4 hold, along with the extra assumptions stated below:

• Support of the true latents Ztrain is path-connected (Definition D.1.3)

• Block-specific decoders g(B) and ĝ(B) are injective for all blocks B ∈ B

Then for optimal solution (f̂ , ĝ) under the reconstruction loss we have ĝ is (globally) B-
disentangled w.r.t. g (Definition 3.4.2). Further, for all B ∈ B, we have the following:

ĝ(B)(zB) = g(π(B))(v̄π(B)(zB)) + c(B), for all zB ∈ Ẑtrain
B , (3.7)

where the functions v̄π(B) are from Definition 3.4.2 and the vectors c(B) ∈ Rdx are constants
such that

∑
B∈B c

(B) = 0. We also have that the functions v̄π(B) : Ẑtrain
B → Ztrain

π(B) are
C2-diffeomorphisms and have the following form:

v̄π(B)(zB) = (gπ(B))−1(ĝ(B)(zB)− c(B)), for all zB ∈ Ẑtrain
B . (3.8)

Proof. Step 1 - Showing the permutation π does not change for different z. The-
orem 3.4.4 showed local B-disentanglement, i.e. for all z ∈ Ẑtrain, Dv(z) has a B-block
permutation structure. The first step towards showing global disentanglement is to show that
this block structure is the same for all z ∈ Ẑtrain (a priori, π could be different for different
z). Since v is C2, its Jacobian Dv(z) is continuous. Since Ztrain is path-connected, Ẑtrain

must also be since both sets are diffeomorphic. By Lemma D.1.19, this means the B-block
permutation structure of Dv(z) is the same for all z ∈ Ẑtrain (implicitly using the fact that
path-connected implies connected). In other words, there exists a permutation π respecting
B such that, for all z ∈ Ẑtrain and all distinct B,B′ ∈ B, DBvπ(B′)(z) = 0.

114

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

Step 2 - Linking object-specific decoders. We now show that, for all B ∈ B,
ĝ(B)(zB) = g(π(B))(vπ(B)(z)) + c(B) for all z ∈ Ẑtrain. To do this, we rewrite (D.10) as

Dĝ(J)(zJ) =
∑
B∈B

Dg(B)(vB(z))DJvB(z) , (D.48)

but because B ̸= π(J) =⇒ DJvB(z) = 0 (block-permutation structure), we get

Dĝ(J)(zJ) = Dg(π(J))(vπ(J)(z))DJvπ(J)(z) . (D.49)

The above holds for all J ∈ B. We simply change J by B in the following equation.

Dĝ(B)(zB) = Dg(π(B))(vπ(B)(z))DBvπ(B)(z) . (D.50)

Now notice that the r.h.s. of the above equation is equal to D(g(π(B)) ◦ vπ(B)). We can thus
write

Dĝ(B)(zB) = D(g(π(B)) ◦ vπ(B))(z) , for all z ∈ Ẑtrain . (D.51)

Now choose distinct z, z0 ∈ Ẑtrain. Since Ztrain is path-connected, Ẑtrain also is since they
are diffeomorphic. Hence, there exists a continuously differentiable function ϕ : [0, 1]→ Ẑtrain

such that ϕ(0) = z0 and ϕ(1) = z. We can now use (D.51) together with the gradient
theorem, a.k.a. the fundamental theorem of calculus for line integrals, to show the following∫ 1

0

Dĝ(B)(ϕB(z)) · ϕB(t)dt =

∫ 1

0

D(g(π(B)) ◦ vπ(B))(ϕ(z)) · ϕ(t)dt (D.52)

ĝ(B)(zB)− ĝ(B)(z0B) = g(π(B)) ◦ vπ(B)(z)− g(π(B)) ◦ vπ(B)(z
0) (D.53)

ĝ(B)(zB) = g(π(B)) ◦ vπ(B)(z) + (ĝ(B)(z0B)− g(π(B)) ◦ vπ(B)(z
0))︸ ︷︷ ︸

constant in z

(D.54)

ĝ(B)(zB) = g(π(B)) ◦ vπ(B)(z) + c(B) , (D.55)

which holds for all z ∈ Ẑtrain.
We now show that

∑
B∈B c

(B) = 0. Take some z0 ∈ Ẑtrain. Equations (D.9) & (D.55) tell

115

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

us that ∑
B∈B

g(B)(vB(z
0)) =

∑
B∈B

ĝ(B)(z0B) (D.56)

=
∑
B∈B

g(π(B))(vπ(B)(z
0)) +

∑
B∈B

c(B) (D.57)

=
∑
B∈B

g(B)(vB(z
0)) +

∑
B∈B

c(B) (D.58)

=⇒
∑
B∈B

c(B) = 0 (D.59)

Step 3 - From local to global disentanglement. By assumption, the functions
g(B) : Ztrain

B → Rdx are injective. This will allow us to show that vπ(B)(z) depends only on
zB. We proceed by contradiction. Suppose there exists (zB, zBc) ∈ Ẑtrain and z0Bc such that
(zB, z

0
Bc) ∈ Ẑtrain and vπ(B)(zB, zBc) ̸= vπ(B)(zB, z

0
Bc). This means

g(π(B)) ◦ vπ(B)(zB, zBc) + c(B) = ĝ(B)(zB) = g(π(B)) ◦ vπ(B)(zB, z
0
Bc) + c(B)

g(π(B))(vπ(B)(zB, zB)) = g(π(B))(vπ(B)(zB, z
0
B))

which is a contradiction with the fact that g(π(B)) is injective. Hence, vπ(B)(z) depends only
on zB. We also get an explicit form for vπ(B):

(gπ(B))−1(ĝ(B)(zB)− c(B)) = vπ(B)(z) for all z ∈ Ztrain . (D.60)

We define the map v̄π(B)(zB) := (gπ(B))−1(ĝ(B)(zB)− c(B)) which is from Ẑtrain
B to Ztrain

π(B). This
allows us to rewrite (D.55) as

ĝ(B)(zB) = g(π(B)) ◦ v̄π(B)(zB) + c(B) , for all zB ∈ Ztrain
B . (D.61)

Because ĝ(B) is also injective, we must have that v̄π(B) : Ẑtrain
B → Ztrain

π(B) is injective as well.
We now show that v̄π(B) is surjective. Choose some zπ(B) ∈ Ztrain

π(B). We can always find
zπ(B)c such that (zπ(B), zπ(B)c) ∈ Ztrain. Because v : Ẑtrain → Ztrain is surjective (it is a
diffeomorphism), there exists a z0 ∈ Ẑtrain such that v(z0) = (zπ(B), zπ(B)c). By (D.60), we
have that

v̄π(B)(z
0
B) = vπ(B)(z

0) . (D.62)

which means v̄π(B)(z
0
B) = zπ(B).

116

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

We thus have that v̄π(B) is bijective. It is a diffeomorphism because

detDv̄π(B)(zB) = detDBvπ(B)(z) ̸= 0 ∀z ∈ Ẑtrain (D.63)

where the first equality holds by (D.60) and the second holds because v is a diffeomorphism
and has block-permutation structure, which means it has a nonzero determinant everywhere
on Ẑtrain and is equal to the product of the determinants of its blocks, which implies each
block DBvπ(B) must have nonzero determinant everywhere.

Since v̄π(B) : Ẑtrain
B → Ztrain

π(B) bijective and has invertible Jacobian everywhere, it must be a
diffeomorphism.

D.1.5 Injectivity of object-specific decoders v.s. injectivity

of their sum

We want to explore the relationship between the injectivity of individual object-specific
decoders g(B) and the injectivity of their sum, i.e.

∑
B∈B g

(B).
We first show the simple fact that having each g(B) injective is not sufficient to have∑

B∈B g
(B) injective. Take g(B)(zB) = W (B)zB where W (B) ∈ Rdx×|B| has full column-rank for

all B ∈ B. We have that∑
B∈B

g(B)(zB) =
∑
B∈B

W (B)zB = [W (B1) · · · W (Bℓ)]z , (D.64)

where it is clear that the matrix [W (B1) · · · W (Bℓ)] ∈ Rdx×dz is not necessarily injective even
if each W (B) is. This is the case, for instance, if all W (B) have the same image.

We now provide conditions such that
∑

B∈B g
(B) injective implies each g(B) injective. We

start with a simple lemma:

Lemma D.1.20. If g ◦ h is injective, then h is injective.

Proof. By contradiction, assume that h is not injective. Then, there exists distinct x1, x2 ∈
Dom(h) such that h(x1) = h(x2). This implies g ◦h(x1) = g ◦h(x2), which violates injectivity
of g ◦ h.

The following Lemma provides a condition on the domain of the function
∑

B∈B g
(B),

Ztrain, so that its injectivity implies injectivity of the functions g(B).

Lemma D.1.21. Assume that, for all B ∈ B and for all distinct zB, z′B ∈ Ztrain
B , there exists

zBc such that (zB, zBc), (z′B, zBc) ∈ Ztrain. Then, whenever
∑

B∈B g
(B) is injective, each g(B)

must be injective.

117

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

Proof. Notice that g(z) :=
∑

B∈B g
(B)(zB) can be written as g := SumBlocks ◦ ḡ(z) where

ḡ(z) :=


g(B1)(zB1)

...
g(Bℓ)(zBℓ

)

 , and SumBlocks(x(B1), . . . , x(Bℓ)) :=
∑
B∈B

x(B) (D.65)

Since g is injective, by Lemma D.1.20 ḡ must be injective.
We now show that each g(B) must also be injective. Take zB, z

′
B ∈ Ztrain

B such that
g(B)(zB) = g(B)(z′B). By assumption, we know there exists a zBc s.t. (zB, zBc) and (z′B, zBc)

are in Ztrain. By construction, we have that ḡ((zB, zBc)) = ḡ((z′B, zBc)). By injectivity of ḡ,
we have that (zB, zBc) ̸= (z′B, zBc), which implies zB ̸= z′B, i.e. g(B) is injective.

D.1.6 Proof of Corollary 3.4.8: Cartesian-Product Extrap-

olation

Corollary 3.4.8 (Cartesian-product extrapolation). Suppose all the assumptions of Theo-
rem 3.4.6 hold. Then we have the following:∑

B∈B

ĝ(B)(zB) =
∑
B∈B

g(π(B))(v̄π(B)(zB)) ∀z ∈ CPEB(Ẑtrain) (3.10)

Furthermore, if CPEB(Ztrain) ⊆ Ztest, then ĝ(CPEB(Ẑtrain)) ⊆ g(Ztest).

Proof. Pick z ∈ CPE(Ẑtrain). By definition, this means that, for all B ∈ B, zB ∈ Ẑtrain
B . We

thus have that, for all B ∈ B,

ĝ(B)(zB) = g(π(B)) ◦ v̄π(B)(zB) + c(B) (D.66)

We can thus sum over B to obtain∑
B∈B

ĝ(B)(zB) =
∑
B∈B

g(π(B)) ◦ v̄π(B)(zB) +
∑
B∈B

c(B)

︸ ︷︷ ︸
=0

(D.67)

Since z ∈ CPE(Ẑtrain) was arbitrary, we have

for all z ∈ CPE(Ẑtrain),
∑
B∈B

ĝ(B)(zB) =
∑
B∈B

g(π(B)) ◦ v̄π(B)(zB) (D.68)

ĝ(z) = g ◦ v̄(z) (D.69)

118

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

where v̄ : CPEB(Ẑtrain)→ CPEB(Ztrain) is defined as

v̄(z) :=


v̄B1(zπ−1(B1))

...
v̄Bℓ

(zπ−1(Bℓ))

 (D.70)

The map v̄ is a diffeomorphism since each v̄π(B) is a diffeomorphism from Ẑtrain
B to Ztrain

π(B).
By (D.69) we get

ĝ(CPEB(Ẑtrain)) = g ◦ v̄(CPEB(Ẑtrain)) (D.71)

and since the map v̄ is surjective we have v̄(CPEB(Ẑtrain)) = CPEB(Ztrain) and thus

ĝ(CPEB(Ẑtrain)) = g(CPEB(Ztrain)) (D.72)

Hence if CPEB(Ztrain) ⊆ Ztest, then g(CPEB(Ztrain)) ⊆ g(Ztest).

D.2 Experiments

D.2.1 Training Details

Loss Function. We use the standard reconstruction objective of mean squared error
loss between the ground truth data and the reconstructed/generated data.

Hyperparameters. For both the ScalarLatents and the BlockLatents dataset, we
used the Adam optimizer with the hyperparameters defined below. Note that we maintain
consistent hyperparameters across both the Additive decoder and the Non-Additive decoder
method.

ScalarLatents Dataset.

• Batch Size: 64

• Learning Rate: 1× 10−3

• Weight Decay: 5× 10−4

• Total Epochs: 4000

BlockLatents Dataset.

119

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

• Batch Size: 1024

• Learning Rate: 1× 10−3

• Weight Decay: 5× 10−4

• Total Epochs: 6000

Model Architecture. We use the following architectures for Encoder and Decoder
across both the datasets (ScalarLatents, BlockLatents). Note that for the ScalarLatents
dataset we train with latent dimension dz = 2, and for the BlockLatents dataset we train
with latent dimension dz = 4, which corresponds to the dimensionalities of the ground-truth
data generating process for both datasets.

Encoder Architecture:

• RestNet-18 Architecture till the penultimate layer (512 dimensional feature output)

• Stack of 5 fully-connected layer blocks, with each block consisting of Linear Layer
(dimensions: 512 × 512), Batch Normalization layer, and Leaky ReLU activation
(negative slope: 0.01).

• Final Linear Layer (dimension: 512× dz) followed by Batch Normalization Layer to
output the latent representation.

Decoder Architecture (Non-additive):

• Fully connected layer block with input as latent representation, consisting of Linear
Layer (dimension: dz × 512), Batch Normalization layer, and Leaky ReLU activation
(negative slope: 0.01).

• Stack of 5 fully-connected layer blocks, with each block consisting of Linear Layer
(dimensions: 512 × 512), Batch Normalization layer, and Leaky ReLU activation
(negative slope: 0.01).

• Series of DeConvolutional layers, where each DeConvolutional layer is follwed by Leaky
ReLU (negative slope: 0.01) activation.

– DeConvolution Layer (cin: 64, cout: 64, kernel: 4; stride: 2; padding: 1)

– DeConvolution Layer (cin: 64, cout: 32, kernel: 4; stride: 2; padding: 1)

– DeConvolution Layer (cin: 32, cout: 32, kernel: 4; stride: 2; padding: 1)

– DeConvolution Layer (cin: 32, cout: 3, kernel: 4; stride: 2; padding: 1)

120

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

Decoder Architecture (Additive): Recall that an additive decoder has the form g(z) =∑
B∈B g

(B)(zB). Each g(B) has the same architecture as the one presented above for the
non-additive case, but the input has dimensionality |B| (which is 1 or 2, depending on the
dataset). Note that we do not share parameters among the functions g(B).

D.2.2 Datasets Details

We use the moving balls environment from Ahuja et al. [2022] with images of dimension
64× 64× 3, with latent vector (z) representing the position coordinates of each balls. We
consider only two balls. The rendered images have pixels in the range [0, 255].

ScalarLatents Dataset. We fix the x-coordinate of each ball to 0.25 and 0.75. The
only factors varying are the y-coordinates of both balls. Thus, z ∈ R2 and B = {{1}, {2}}
where z1 and z2 designate the y-coordinates of both balls. We sample the y-coordinate of the
first ball from a continuous uniform distribution as follows: z1 ∼ Uniform(0, 1). Then we
sample the y-coordinate of the second ball as per the following scheme:

z2 ∼

Uniform(0, 1) if z1 ≤ 0.5

Uniform(0, 0.5) else

Hence, this leads to the L-shaped latent support, i.e., Ztrain := [0, 1]×[0, 1]\[0.5, 1]×[0.5, 1].
We use 50k samples for the test dataset, while we use 20k samples for the train dataset

along with 5k samples (25% of the train sample size) for the validation dataset.

BlockLatents Dataset. For this dataset, we allow the balls to move in both the x, y
directions, so that z ∈ R4 and B = {{1, 2}, {3, 4}}. For the case of independent latents,
we sample each latent component independently and identically distributed according to a
uniform distribution over (0, 1), i.e. zi ∼ Uniform(0, 1). We rejected the images that present
occlusion, i.e. when one ball hides another one.∗

For the case of dependent latents, we sample the latents corresponding to the first ball
similarly from the same continuous uniform distribution, i.e, z1, z2 ∼ Uniform (0, 1). However,
the latents of the second ball are a function of the latents of the first ball, as described in
what follows:

∗Note that, in the independent latents case, the latents are not actually independent because of the
rejection step which prevents occlusion from happening.

121

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

z3 ∼

Uniform(0, 0.5) if 1.25× (z21 + z22) ≥ 1.0

Uniform(0.5, 1) if 1.25× (z21 + z22) < 1.0

z4 ∼

Uniform(0.5, 1) if 1.25× (z21 + z22) ≥ 1.0

Uniform(0, 0.5) if 1.25× (z21 + z22) < 1.0

Intuitively, this means the second ball will be placed in either the top-left or the bottom-right
quadrant based on the position of the first ball. We also exclude from the dataset the images
presenting occlusion. Note that our dependent BlockLatent setup is same as the non-linear
SCM case from Ahuja et al. [Ahuja et al., 2023].

We use 50k samples for both the train and the test dataset, along with 12.5k samples (25%
of the train sample size) for the validation dataset.

Disconnected Support Dataset. For this dataset, we have setup similar to the
ScalarLatents dataset; we fix the x-coordinates of both balls to 0.25 and 0.75 and only
vary the y-coordinates so that z ∈ R2. We sample the y-coordinate of the first ball (z1)
from Uniform(0, 1). Then we sample the y-coordinate of the second ball (z2) from either
of the following continuous uniform distribution with equal probability; Uniform(0, 0.25)
and Uniform(0.75, 1). This leads to a disconnected support given by Ztrain := [0, 1]× [0, 1] \
[0.25, 0.75]× [0.25, 0.75].

We use 50k samples for the test dataset, while we use 20k samples for the train dataset along
with 5k samples (25% of the train sample size) for the validation dataset.

D.2.3 Evaluation Metrics

Recall that, to evaluate disentanglement, we compute a matrix of scores (sB,B′) ∈ Rℓ×ℓ where
ℓ is the number of blocks in B and sB,B′ is a score measuring how well we can predict the
ground-truth block zB from the learned latent block ẑB′ = ĝB′(x) outputted by the encoder.
The final Latent Matching Score (LMS) is computed as LMS = argmaxπ∈SB

1
ℓ

∑
B∈B sB,π(B),

where SB is the set of permutations respecting B (Definition 3.4.1). These scores are always
computed on the test set.

Metric LMSSpear: As mentioned in the main paper, this metric is used for the Scalar-
Latents dataset where each block is 1-dimensional. Hence, this metric is almost the same as
the mean correlation coefficient (MCC), which is widely used in the nonlinear ICA litera-
ture [Hyvärinen and Morioka, 2016, 2017, Hyvärinen et al., 2019, Khemakhem et al., 2020b,

122

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

Lachapelle et al., 2022b], with the only difference that we use Spearman correlation instead
of Pearson correlation as a score sB,B′ . The Spearman correlation can capture nonlinear
monotonous relations, unlike Pearson which can only capture linear dependencies. We favor
Spearman over Pearson because our identifiability result (Theorem 3.4.6) guarantees we can
recover the latents only up to permutation and element-wise invertible transformations, which
can be nonlinear.

Metric LMStree: This metric is used for the BlockLatents dataset. For this metric,
we take sB,B′ to be the R2 score of a Regression Tree with maximal depth of 10. For this,
we used the class sklearn.tree.DecisionTreeRegressor from the sklearn library. We
learn the parameters of the Decision Tree using the train dataset and then use it to evaluate
LMStree metric on the test dataset. For the additive decoder, it is easy to compute this
metric since the additive structure already gives a natural partition B which matches the
ground-truth. However, for the non-additive decoder, there is no natural partition and thus
we cannot compute LMStree directly. To go around this problem, for the non-additive decoder,
we compute LMStree for all possible partitions of dz latent variables into blocks of size |B| = 2

(assuming all blocks have the same dimension), and report the best LMStree. This procedure
is tractable in our experiments due to the small dimensionality of the problem we consider.

Add.
 (In-Supp)

Non-Add.
 (In-Supp)

Add.
 (Out-Supp)

Non-Add.
 (Out-Supp)

10 1

6 × 10 2

2 × 10 1
Reconstruction MSE (Log Scale)

Add.
 (In-Supp)

Non-Add.
 (In-Supp)

Add.
 (Out-Supp)

Non-Add.
 (Out-Supp)

50

75

100
LMS-Spearman (MCC)

Figure D.1: Reconstruction mean squared error (MSE) (↓) and Latent Matching Score (LMS)
(↑) over 10 different random initializations for ScalarLatents dataset.

D.2.4 Boxplots for main experiments (Table 3.1)

Since the standard error in the main results (Table 3.1) was high, we provide boxplots in
Figures D.1 & D.2 to have a better visibility on what is causing this. We observe that the
high standard error for the Additive approach was due to bad performance for a few bad
random initializations for the ScalarLatents dataset; while we have nearly perfect latent
identification for the others. Figure D.6e shows the latent space learned by the worst case
seed, which somehow learned a disconnected support even if the ground-truth support was

123

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

Additive Non-Additive
10 2

10 1
Reconstruction MSE (Log Scale)

Additive Non-Additive
25

50

75

100
LMS-Tree

(a) Independent Latent Case

Additive Non-Additive
10 2

2 × 10 2

Reconstruction MSE (Log Scale)

Additive Non-Additive
60

80

100
LMS-Tree

(b) Dependent Latent Case

Figure D.2: Reconstruction mean squared error (MSE) (↓) and Latent Matching Score (LMS)
(↑) for 10 different initializations for BlockLatents dataset.

connected. Similarly, for the case of Independent BlockLatents, there are only a couple of
bad random initializations and the rest of the cases have perfect identification.

D.2.5 Additional Results: BlockLatents Dataset

To get a qualitative understanding of latent identification in the BlockLatents dataset, we
plot the response of each predicted latent as we change a particular ground-truth latent factor.
We describe the following cases of changing the ground-truth latents:

• Ball 1 moving along x-axis: We sample 10 equally spaced points for z1 from [0, 1];
while keeping other latents fixed as follows: z2 = 0.25, z3 = 0.50, z4 = 0.75. We will
never have occlusion since the balls are separated along the y-axis z4 − z2 > 0.

• Ball 2 moving along x-axis: We sample 10 equally spaced points for z3 from [0, 1];
while keeping other latents fixed as follows: z1 = 0.50, z2 = 0.25, z4 = 0.75. We will
never have occlusion since the balls are separated along the y-axis z4 − z2 > 0.

• Ball 1 moving along y-axis: We sample 10 equally spaced points for z2 from [0, 1];
while keeping other latents fixed as follows: z1 = 0.25, z3 = 0.75, z4 = 0.50. We will
never have occlusion since the balls are separated along the x-axis z3 − z1 > 0.

124

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

• Ball 2 moving along y-axis: We sample 10 equally spaced points for z4 from [0, 1];
while keeping other latents fixed as follows: z1 = 0.25, z2 = 0.50, z3 = 0.75. We will
never have occlusion since the balls are separated along the x-axis z3 − z1 > 0.

Figure 3.5 in the main paper presents the latent responses plot for the median LMStree

case among random initializations. In Figure D.3, we provide the results for the case of best
and the worst LMStree among random seeds. We find that Additive Decoder fails for only for
the worst case random seed, while Non-Additive Decoder fails for all the cases.

Additionally, we provide the object-specific reconstructions for the Additive Decoder in
Figure D.4. This helps us better understand the failure of Additive Decoder for the worst
case random seed (Figure D.4c), where the issue arises due to bad reconstruction error.

D.2.6 Disconnected Support Experiments

Since path-connected latent support is an important assumption for latent identification with
additive decoders (Theorem 3.4.6), we provide results for the case where the assumption is
not satisfied. We experiment with the Disconnected Support dataset (Section D.2.2) and
find that we obtain much worse LMSSpear as compared to the case of training with L-shaped
support in the ScalarLatents dataset. Over 10 different random initializations, we find
mean LMSSpear performance of 69.5 with standard error of 6.69.

For better qualitative understanding, we provide visualization of the latent support and
the extrapolated images for the median LMSSpear among 10 random seeds in Figure D.5.
Somewhat surprisingly, the representation appears to be aligned in the sense that the first
predicted latent corresponds to the blue ball while the second predicted latent correspond to
the red ball. Also surprisingly, extrapolation occurs (we can see images of both balls high).
That being said, we observe that the relationship between the predicted latent 2 (ẑ2) and y-
coordinate of second (red) ball is not monotonic, which explains why the Spearman correlation
is so low (Spearman correlation scores are high when there is a monotonic relationship between
both variables).

D.2.7 Additional Results: ScalarLatents Dataset

To get a qualitative understanding of extrapolation, we plot the latent support on the test
dataset and sample a grid of equally spaced points from the support of each predicted latent
on the test dataset. The grid represents the cartesian-product of the support of predicted
latents and would contain novel combinations of latents that were unseen during training. We
show the reconstructed images for each point from the cartesian-product grid to see whether
the model is able to reconstruct well the novel latent combinations.

125

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

Figure 3.4 in the main paper presents visualizations of the latent support and the
extrapolated images for the median LMSSpear case among random seeds. In Figure D.6, we
provide the results for the case of best and the worst LMSSpear among random seeds. We
find that even for the best case (Figure D.6b), Non-Additive Decoder does not generate good
quality extrapolated images, while Additive Decoder generates extrapoalted images for the
best and median case. The worst-case run for the Additive Decoder has disconnected support,
which explains why it is not able to extrapolate.

126

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

0.25 0.50 0.75
Ball 1 moving along x axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along x axis

2

0

2

0.25 0.50 0.75
Ball 1 moving along y axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along y axis

2

0

2

Latent 1 Latent 2 Latent 3 Latent 4

(a) Additive Decoder (Best) (LMSTree : 99.9)

0.25 0.50 0.75
Ball 1 moving along x axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along x axis

2

0

2

0.25 0.50 0.75
Ball 1 moving along y axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along y axis

2

0

2

Latent 1 Latent 2 Latent 3 Latent 4

(b) Non-Additive Decoder (Best) (LMSTree :
83.9)

0.25 0.50 0.75
Ball 1 moving along x axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along x axis

2

0

2

0.25 0.50 0.75
Ball 1 moving along y axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along y axis

2

0

2

Latent 1 Latent 2 Latent 3 Latent 4

(c) Additive Decoder (Median) (LMSTree : 99.8)

0.25 0.50 0.75
Ball 1 moving along x axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along x axis

2

0

2

0.25 0.50 0.75
Ball 1 moving along y axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along y axis

2

0

2

Latent 1 Latent 2 Latent 3 Latent 4

(d) Non-Additive Decoder (Median) (LMSTree :
58.6)

0.25 0.50 0.75
Ball 1 moving along x axis

4

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along x axis

2

0

2

0.25 0.50 0.75
Ball 1 moving along y axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along y axis

2

0

2

Latent 1 Latent 2 Latent 3 Latent 4

(e) Additive Decoder (Worst) (LMSTree : 54.1)

0.25 0.50 0.75
Ball 1 moving along x axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along x axis

2

0

2

0.25 0.50 0.75
Ball 1 moving along y axis

2

0

2

Pr
ed

ict
ed

 L
at

en
ts

0.25 0.50 0.75
Ball 2 moving along y axis

2

0

2

Latent 1 Latent 2 Latent 3 Latent 4

(f) Non-Additive Decoder (Worst) (LMSTree :
24.6)

Figure D.3: Latent responses for the cases with the best/median/worst LMSTree among
runs performed on the BlockLatent dataset with independent latents. In each plot, we
report the latent factors predicted from multiple images where one ball moves along only one
axis at a time.

127

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

(a) Additive Decoder (Best)

(b) Additive Decoder (Median)

(c) Additive Decoder (Worst)

Figure D.4: Object-specific renderings with the best/median/worst LMStree among runs
performed on the BlockLatents dataset with independent latents. In each plot, the first row
is the original image, the second row is the reconstruction and the third and fourth rows are
the output of the object-specific decoders. In the best and median cases, each object-specific
decoder corresponds to one and only one object, e.g. the third row of the best case always
corresponds to the red ball. However, in the worst case, there are issues with reconstruction
as only one of the balls is generated. Note that the visual artefacts are due to the additive
constant indeterminacy we saw in Theorem 3.4.6, which cancel each other as is suggested by
the absence of artefacts in the reconstruction.

128

Supplementary Material: Additive Decoders for Latent Variables Identification and
Cartesian-Product Extrapolation

Figure D.5: Learned latent space, Ẑtrain, and the corresponding reconstructed images of the
additive decoder with the median LMSSpear among runs performed on the Disconnected
Support dataset. The red dots correspond to latent factors used to generate the images.

(a) Additive Decoder (Best) (LMSSpear : 99.9)
(b) Non-Additive Decoder (Best) (LMSSpear :
99.9)

(c) Additive Decoder (Median) (LMSSpear : 99.9)
(d) Non-Additive Decoder (Median) (LMSSpear :
76.1)

(e) Additive Decoder (Worst) (LMSSpear : 69.5)
(f) Non-Additive Decoder (Worst) (LMSSpear :
39.8)

Figure D.6: Figure (a, c, e) shows the learned latent space, Ẑtrain, and the corresponding
reconstructed images of the additive decoder with the best/median/worst LMSSpear among
runs performed on the ScalarLatents dataset. Figure (b, d, f) shows the same thing for the
non-additive decoder. The red dots correspond to latent factors used to generate the images
and the yellow square highlights extrapolated images.

129

Appendix E

Supplementary Material:

Compositional Generalization with

Additive Energy Models

E.1 Evaluating additive functions on affine-hull

We are given an additive function g(z) =
∑

i gi(zi) and we want to evaluate the function on
z′ ∈ Aff(Ztrain) where z′ =

∑
z∈Ztrain αzτ(z) and τ(z) = [τ(z1), · · · , τ(zdz)] ∈ Rdz×m.

Define g = [g1(z1 = 1), · · · , g1(z1 = m), · · · , gdz(zdz = 1), · · · , gdz(zdz = m)]. Essentially
g ∈ Rdz×m is a concatenation of different components of gi, where each component gi is
evaluated on the different values the factor zi can take.

It is easy to observe that g(z) =
∑

i gi(zi) = < g, τ(z) >. Using this equality, we can show
the following:

g(z′) =< g, τ(z′) >

=< g,
∑

z∈Ztrain

αzτ(z) >

=
∑

z∈Ztrain

αz < g, τ(z) >

=
∑

z∈Ztrain

αzg(z)

Hence Proved.

130

Supplementary Material: Compositional Generalization with Additive Energy Models

E.2 Proof for Theorem 4.2.7

In order to prove this theorem we first establish some basic lemmas.

Lemma E.2.1. If we consider binary factors, m = 2, then there are four possible concatenated
one-hot vectors τ(z), i.e., τ(0, 0), τ(0, 1), τ(1, 0), and τ(1, 1) denoted by t1, t2, t3, t4. Each ti
can be expressed as an affine combination of the remaining.

Proof.

(+1) ·


0

1

0

1

 + (−1) ·


0

1

1

0

 + (+1) ·


1

0

1

0

 =


1

0

0

1

 (E.1)

(−1) ·


0

1

0

1

 + (+1) ·


0

1

1

0

 + (+1) ·


1

0

0

1

 =


1

0

1

0

 (E.2)

(+1) ·


1

0

1

0

 + (+1) ·


0

1

0

1

 + (−1) ·


1

0

0

1

 =


0

1

1

0

 (E.3)

(−1) ·


1

0

1

0

 + (+1) ·


0

1

1

0

 + (+1) ·


1

0

0

1

 =


0

1

0

1

 (E.4)

We now interpret Lemma E.2.1 from a geometric perspective on. Consider a 2× 2 subgrid
of the grid G. In Figure E.1, we show a 2× 2 subgrid and illustrate Lemma E.2.1. Lets define
the following:

• t1 = [0, · · · , 1i, · · · 0, 0, · · · , 1j, · · · 0]

• t2 = [0, · · · , 1i+1, · · · 0, 0, · · · , 1j, · · · 0]

• t3 = [0, · · · , 1i, · · · 0, 0, · · · , 1j+1, · · · 0]

• t4 = [0, · · · , 1i+1, · · · 0, 0, · · · , 1j+1, · · · 0]

131

Supplementary Material: Compositional Generalization with Additive Energy Models

Observe that using Lemma E.2.1, we get t4 = t2 + t3 − t1. Similarly, we can express every
other ti in terms of rest of tj’s. While the above observation is made with contiguous points
on the grid, the observation generalizes as follows. We consider each point on the grid as a
vertex. Each vertex v = (i, j) shares an edge with another vertex if the Hamming distance
equals one and there is no edge otherwise (similar to graph construction in Definition 4.2.2).
We can now consider any 2 × 2 subgrid which does not necessarily consist of contiguous
points. In Figure E.2, we show the graph for this general subgrid. Even in such a case, we
continue to be able apply Lemma E.2.1 following the same exact proof recipe.

(i, j)

(i+ 1, j)

(i, j + 1)

(i+ 1, j + 1)

Figure E.1: The three red corners correspond to the observed and blue corner is the one we
extrapolate to.

(i, j)

(i
′
, j)

(i, j
′
)

(i
′
, j

′
)

Figure E.2: The three red corners correspond to the observed and blue corner is the one we
extrapolate to.

Define the observed set of groups as N . Suppose that their affine span contains all the
points in a subgrid S of size p× n. Next, we show that if we add a new point g = (g1, g2),
which shares either the x or the y-coordinate with from outside this subgrid, then the affine
span of N ∪ {g} is a larger subgrid of size either p × n + 1 or (p + 1) × n. Define Cx

as the set of points that share the same x coordinate as g and same y coordinate as S,
Cx = {(gx, 1), (gx, 2), · · · , (gx, n)}. Define Cy as the set of points that share the same y
coordinate as g and same x coordinate as S, Cy = {(1, gy), (2, gy), · · · , (p, gy)}.

Theorem E.2.2. If the affine span of the observed set N contains a subgrid S of size p× n.
If the new point g shares the x-coordinate with a point in S, then the the affine span of
N ∪ {g} contains S ∪ Cy.

Proof. Consider a subgrid S = {x1, · · · , xp}×{y1, · · · , yn}. Without loss of generality, we can
permute the points and make the subgrid contiguous as follows S = {1, · · · , p} × {1, · · · , n}.

132

Supplementary Material: Compositional Generalization with Additive Energy Models

We observe a new group g, which shares x coordinate with one of the points in S. Without
loss of generality let this point be (1, n+ 1) (we can always permute the columns and rows to
achieve such a configuration). Consider the triplet – (z1, z2, z3) = ((1, n), (2, n), (1, n+ 1)).
We use Lemma E.2.1 to infer that the fourth point z4 = (2, n+ 1) on this 2× 2 subgrid can
be obtained as an affine combination of this triplet, i.e., τ(z4) = ατ(z1) + βτ(z2) + γτ(z3).
Also, we know z1, z2, z3 can be written as an affine combination of seen points in N as follows
τ(z1) =

∑
k∈N akτ(zθk), τ(z2) =

∑
k∈N bkτ(zθk), and τ(z3) =

∑
ckτ(zθk). Observe that

τ(z4) = ατ(z1) + βτ(z2) + γτ(z3) = α(
∑

akτ(zθk)) + β(
∑

bkτ(zθk)) + γ(
∑

ckτ(zθk))

=
∑
k∈N

(αak + βbk)τ(zθk) + γτ(z3)

(E.5)

Observe that
∑

k(αak+βbk) = (α
∑

k ak+β
∑

k bk) = α+β. Since α+β+γ Thus z4 is an
affine combination of points in N ∪{g}. Thus we have shown the claim for the point (2, n+1).
We can repeat this claim for point (3, n + 1) and so on until we reach (m,n + 1) beyond
which there would be no points in S that are expressed as affine combination of N . We can
make this argument formal through induction. We have already shown the base case above.
Suppose all the points (j, n+ 1) in j ≤ i < m are in the affine span of N ∪ {z3}. Consider
the point z4 = (i+ 1, n+ 1). Construct the triplet (z1, z2, z3) = ((i, n), (i, n+ 1), (i+ 1, n)).
Again from Lemma E.2.1, it follows that τ(z4) = ατ(z1) + βτ(z2) + γτ(z3). We substitute
z1, z2 and z3 with their corresponding affine combinations. τ(z4) = α

∑
k∈N∪{g} akτ(zθk) +

β
∑

k∈N∪{g} bkτ(zθk) + γ
∑

k∈N∪{g} ckτ(zθk). Since
∑

k∈N∪{g} αak + βbk + γck = 1.

Figure E.3: A 4× 5 grid. Red points form S, a new point g in blue is observed and all other
points in blue are in the affine span of S ∪ {g}

We now describe a simple procedure that helps us understand how many groups we need
to see before we are guaranteed that the affine span of seen points span the whole grid. We
first construct a determinstic procedure.

133

Supplementary Material: Compositional Generalization with Additive Energy Models

Figure E.4: A 4× 5 grid. Red points and blue points form S, a new point g in magenta is
observed and all other points in green are in the affine span of S ∪ {g}

• We start with a base set of three points, B = {(1, 1), (1, 2), (2, 1)}. From Lemma E.2.1,
the affine span contains (2, 2).

• For each i ∈ {2, · · · ,m − 1} add points {(1, i + 1)} ∪ {(i + 1, 1)} to the set. From
Theorem E.2.2, it follows that affine span of B contains (i+ 1× i+ 1) subgrid.

Observe that from the above deterministic procedure shows that we can span the entire
m2 grid with 2m− 1 points. We illustrate this procedure in Figure E.3 and Figure E.4.

We now discuss how the randomized version of this procedure can also allow us to span
the entire grid with O(m log(m)) points, where m denotes the total values taken by each zi.
Set S = ∅, B = ∅ and Flag = x. We use Sx to denote the distinct set of x-coordinates that
appear in S and same goes for Sy.

• Sample a group g from G uniform at random. B = B ∪ {g}, S = S ∪ {g}

• While S ̸= G, sample a group g from G uniform at random. B = B ∪ {g}

– If Flag equals x, g shares the x-coordinate with point in S and is not in S, then
update S = S ∪ (Sx × {gy}) and Flag = y.

– If Flag equals y, g shares the y-coordinate with point in S and is not in S, then
update S = S ∪ ({gx} × Sy) and Flag = x.

In the above procedure, in every step in the while loop a group g is sampled. Note that
when Flag flips from x to y, then following Theorem E.2.2, the set S belongs to the affine
span of B. We can say the same when Flag flips from y to x. In the next theorem, we will
show that the while loop terminates after 8cm log(m) steps with a high probability and the
affine span contains the entire grid G. We follow this strategy. We count the time it takes
for Flag to flip from x to y (from y to x) as it grows the size of S from a k × k subgrid to
k × (k + 1) (k × (k + 1) subgrid to (k + 1)× (k + 1)) subgrid.

134

Supplementary Material: Compositional Generalization with Additive Energy Models

Theorem 4.2.7. Assume 2-d factors, i.e., dz = 2. If the number of sampled factors is more
than 8c ∗m log(m), then Aff(Ztrain) = [m]× [m] with probability ≥ 1− 1

c
.

Proof. We take the first group g that is sampled. Without loss of generality, we say this
group is (1, 1).

Define an event Ak
1: Sampled g shares first (x-coordinate) with S (size k× k) and is not in S.

This can be interpreted as the probability for Flag to flip from x to y. P (Ak
1) =

(k)(m− k)
m2

.

Define an event Ak
2: Sampled g shares first (y-coordinate) with S (size k × (k + 1)) and is

not in S. This can be interpreted as the probability for Flag to flip from y to x. P (Ak
2) =

(k + 1)(m− k)
m2

.

Define T k
1 as the number of groups that need to be sampled before Ak

1 occurs. Define T k
2 as

the number of groups that need to be sampled before Ak
2 occurs.

Define Tsum =
∑m−1

k=1 (T
k
1 + T k

2). Tsum is the total number of groups sampled before the affine
span of the observed groups spans the grid G : [m]× [m].

We now derive a bound on E[Tsum] =
∑m−1

k=1 (E[T k
1] + E[T k

2]). We first simplify
∑m−1

k=1 E[T k
1]

first as follows.
m−1∑
k=1

E[T k
1] =

m−1∑
k=1

1

P (Ak
1)

=
m−1∑
k=1

m2/(k(m− k))

= 2

(m−1)/2∑
k=1

m2/(k(m− k))

= 2m

(m−1)/2∑
k=1

[1
k
+

1

m− k

]
≈ 4m log((m− 1)/2)

(E.6)

Similarly, we obtain a similar bound for
∑m−1

k=1 E[T k
2] as follows.

135

Supplementary Material: Compositional Generalization with Additive Energy Models

m−1∑
k=1

(E[T k
2] =

m−1∑
k=1

1

P (Ak
2)

=
m−1∑
k=1

m2/((k + 1)(m− k))

= 2

(m−1)/2∑
k=1

m2/((k + 1)(m− k))

≤ 2m

(m−1)/2∑
k=1

[1

k + 1
+

1

m− k

]
≈ 4m log((m− 1)/2)

(E.7)

Therefore, E[Tsum] ≈ 8m log(m/2). From Markov inequality, it immediately follows that
P (Tsum ≤ 8cm log(m/2)) ≥ 1− 1

c
.

E.3 Proof for Theorem 4.3.2: Generative Case

Theorem 4.3.2. [Affine Hull Extrapolation with Additive Energy Models] Under Assump-
tion 4.3.1, if the learned additive energy model p̂(x|z) matches the true additive energy model
p(x|z) on training data, i.e., p̂(x|z) = p(x|z) ∀z ∈ Ztrain, then we would have affine hull
extrapolation, p̂(x|z) = p(x|z) ∀z ∈ Aff(Ztrain).

Proof. We start by expanding the expressions for log densities (true and estimated) below.

− log
[
p̂(x|z)

]
= ⟨1, Ê(x, z)⟩+ log(B̂(z))

− log
[
p(x|z)

]
= ⟨1,E(x, z)⟩+ log(B(z))

(E.8)

We equate the densities for the training attributes z ∈ Ztrain, which implies the following:

⟨1, Ê(x, z)⟩ = ⟨1,E(x, z)⟩+ C(z) ∀z ∈ Ztrain, (E.9)

where C(z) = log
(
B(z)/B̂(z)

)
.

Now, lets consider z′ ∈ Aff(Ztrain), which implies τ(z′) =
∑

z∈Ztrain αzτ(z). Using similar
arguments as in Appendix E.1, we can show that ⟨1, Ê(x, z′)⟩ =

∑
z∈Ztrain αz ⟨1, Ê(x, z)⟩. We

136

Supplementary Material: Compositional Generalization with Additive Energy Models

further use this decomposition as follows:

⟨1, Ê(x, z′)⟩ =
∑

z∈Ztrain

αz ⟨1, Ê(x, z)⟩

=
∑

z∈Ztrain

αz(⟨1,E(x, z)⟩+ C(z))

=
∑

z∈Ztrain

αz ⟨1,E(x, z)⟩+
∑

z∈Ztrain

αzC(z)

= ⟨1,E(x, z′)⟩+
∑

z∈Ztrain

αzC(z)

= ⟨1,E(x, z′)⟩+H(Ztrain, {αz}z∈Ztrain)

(E.10)

From this we can infer the following:

p̂(x|z′) = 1

B̂(z′)
exp

(
− ⟨1, Ê(x, z′)⟩

)
=

1

B̂(z′)
exp

(
− ⟨1,E(x, z′)⟩ −H(Ztrain, {αz}z∈Ztrain)

) (E.11)

We now use the fact that density p̂(x|z′) integrates to one for continuous random variables
(or alternatively the probability sums to one for discrete random variables), and simplify as
follows: ∫

p̂(x|z′)dx = 1

=⇒
∫

1

B̂(z′)
exp

(
− ⟨1,E(x, z′)⟩ −H(Ztrain, {αz}z∈Ztrain)

)
dx = 1

=⇒
exp

(
−H(Ztrain, {αz}z∈Ztrain)

)
B̂(z′)

∫
exp

(
− ⟨1,E(x, z′)⟩

)
dx = 1

Using the definition of partition function B(z′) =
∫
exp

(
− ⟨1,E(x, z′)⟩

)
dx, we have the

following
1

B̂(z′)
exp

(
−H(Ztrain, {αz}z∈Ztrain)

)
=

1

B(z′)
(E.12)

We substitute (E.12) into (E.11) to obtain

p̂(x|z′) = 1

B(z′)
exp

(
− ⟨1,E(x, z′)⟩

)
= p(x|z′) (E.13)

Hence, p̂(x|z′) = p(x|z) ∀z ∈ Aff(Ztrain) whenever p̂(x|z) = p(x|z) ∀z ∈ Ztrain.

137

Supplementary Material: Compositional Generalization with Additive Energy Models

E.4 Proof for Theorem 4.3.5: Discriminative Case

Theorem 4.3.5. Consider the data generation process in Definition 4.3.3 and the proposed
estimator p̂(z|x) (4.4). If p̂(z|x) = p(z|x) ∀z ∈ Ztrain, then we can solve the compositional
classification task with p̃(z|x) (4.5), i.e., p̃(z|x) = p(z|x) ∀z ∈ Aff(Ztrain).

Proof. By def. of additive energy model (4.3), we have −⟨1,E(x, z)⟩ = log
(
p(x|z)

)
+logB(z).

Consider z′ ∈ Aff(Ztrain), then we have z′ =
∑

z∈Ztrain αzz

First we show that the partition function at z̃ can be expressed as affine combination of
partition of the individual points and a correction term. By the definition of partition function,
B(z′) =

∫
exp(−⟨1,E(x, z′)⟩)dx, which is further simplified as follows:

logB(z′) = log
(∫

exp
(
− ⟨1,E(x, z′)⟩

)
dx
)

= log
(∫

exp
(
−

∑
z∈Ztrain

αz ⟨1,E(x, z)⟩
)
dx
)

= log
(∫

exp
(∑

z∈Ztrain

αz

(
log p(x|z) + logB(z)

))
dx
)

= log
(
exp

(∑
z∈Ztrain

αz logB(z)
)∫

exp
(∑

z∈Ztrain

αz log p(x|z)
)
dx
)

=
∑

z∈Ztrain

αz logB(z) + log
(∫

exp
(∑

z∈Ztrain

αz log p(x|z)
)
dx
)

(E.14)

Denote R({αz}z∈Ztrain) = log
(∫

exp
(∑

z∈Ztrain αz log p(x|z)
)
dx
)

We now simplify log p(x|z′) as follows for all z′ ∈ Aff(Ztrain).

log p(x|z′) = −⟨1,E(x, z′)⟩ − logB(z′)

= −
∑

z∈Ztrain

αz ⟨1,E(x, z)⟩ − logB(z′)

=
∑

z∈Ztrain

αz

(
log p(x|z) + logB(z)

)
− logB(z′)

=
∑

z∈Ztrain

αz log p(x|z) +
∑

z∈Ztrain

αz logB(z)−
∑

z∈Ztrain

αz log
(
B(z)

)
−R({αz}z∈Ztrain)

=
∑

z∈Ztrain

αz log p(x|z)−R({αz}z∈Ztrain)

(E.15)

Note: The above expression shows how density p(x|z′) for novel points under the
true additive energy model can be written as a function of density for training points

138

Supplementary Material: Compositional Generalization with Additive Energy Models

{p(x|z)|z ∈ Ztrain}. We now try to obtain a similar expression for p(z′|x) by first simplifying∑
z∈Ztrain αz log p(x|z) in terms of p(z|x).

∑
z∈Ztrain

αz log p(x|z) =
∑

z∈Ztrain

αz log
(p(z|x)p(x)

p(z)

)
=

∑
z∈Ztrain

αz log p(z|x)−
∑

z∈Ztrain

αz log p(z) + log p(x)×
∑

z ∈Ztrain

αz

=
∑

z∈Ztrain

αz log p(z|x)−
∑

z∈Ztrain

αz log p(z) + log p(x)

(E.16)

Similarly, R({αz}z∈Ztrain) can be phrased in terms of p(z|x) as follows.

R({αz}z∈Ztrain)

= log
(∫

exp
(∑

z∈Ztrain

αz log p(x|z)
)
dx
)

= log
(∫

exp
(∑

z∈Ztrain

αz log p(z|x)−
∑

z∈Ztrain

αz log p(z) + log p(x)
)
dx
)

= log
(
exp

(
−

∑
z∈Ztrain

αz log p(z)
)∫

exp
(∑

z∈Ztrain

αz log p(z|x)
)
p(x)dx

)
= −

∑
z∈Ztrain

αz log p(z) + log
(∫

exp
(∑

z∈Ztrain

αz log p(z|x)
)
p(x)dx

)
= −

∑
z∈Ztrain

αz log p(z) + log
(
Ex

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)])

(E.17)

Using (E.16), (E.17) to simplify (E.15) we obtain.

139

Supplementary Material: Compositional Generalization with Additive Energy Models

log p(x|z′) =
∑

z∈Ztrain

αz log p(z|x) + log p(x)− log
(
Ex

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)])

log
(p(z′|x)p(x)

p(z′)

)
=

∑
z∈Ztrain

αz log p(z|x) + log p(x)− log
(
Ex

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)])

log p(z′|x)− log p(z′) =
∑

z∈Ztrain

αz log p(z|x)− log
(
Ex

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)])

log p(z′|x) = log p(z′) +
∑

z∈Ztrain

αz log p(z|x)− log
(
Ex

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)])

p(z′|x) = Softmax
(
log p(z′) +

∑
z∈Ztrain

αz log p(z|x)− log
(
Ex

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)]))
(E.18)

Remark. Note that we do not need to use Softmax in the equation above and we can
exactly write the following:

p(z′|x) = exp
(
log p(z′) +

∑
z∈Ztrain

αz log p(z|x)− log
(
Ex

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)]))

Essentially, the denominator in Softmax would sum to one in this case. The reason why we
still wrote the above expression with Softmax is to handle the general case where the prior
distribution can change p(z), and in that case the expression can written as follows.

log p(z′|x) = log
ptest(x)

p(x)
+log p(z′)+

∑
z∈Ztrain

αz log p(z|x)−log
(
Ex

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)])

where the term log
ptest(x)

p(x)
was not present earlier as we were not considering shifts in the

prior distribution. For this general case, the Softmax equality written above would still

be true as the term log
ptest(x)

p(x)
does not depend on z. Therefore, we choose to write the

Softmax variant as its more general and would be true in the case where the prior distribution
undergoes a shift at test time. To remind the reader, the connection of Affine extrapolation
with extrapolation to test distribution is made by assuming Ztest ⊆ Aff(Ztrain).

The above equation (E.18) expresses p(z̃|x) entirely in terms of the distributions over training
support Ztrain. Hence, if the learner can successfully extrapolate to p(z′|x) for all z′ ∈
Aff(Ztrain) if it estimates p(z|x) correctly for all z ∈ Ztrain.

We use the form of the proposed classifier (4.4) to estimate p(z|x) over training support in

140

Supplementary Material: Compositional Generalization with Additive Energy Models

the equation above. Note that since the learner has done estimation perfectly on training
support, i.e., p(x|z) = p̂(x|z) ∀z ∈ Ztrain, we can plug the learner’s estimate of p̂(x|z) (4.4)
in the equation above. First we simplify the term

∑
z∈Ztrain αz log p(z|x) as follows.∑

z∈Ztrain

αz log p(z|x)

=
∑

z∈Ztrain

αz log p̂(z|x)

=
∑

z∈Ztrain

αz

(
log Softmax

(
− ⟨1, Ê(x, z)⟩ − log M̂(z) + log p(z)

))
=

∑
z∈Ztrain

αz

(
− ⟨1, Ê(x, z)⟩ − log M̂(z) + log p(z)

)
− log

(∑
z̃∈Ztrain

exp
(
− ⟨1, Ê(x, z̃)⟩ − log M̂(z̃) + log p(z̃)

))
(E.19)

If we drop the latter term, then softmax in equation (E.18) still remains invariant as this
term does not depend on z. Hence, later when we will substitute this into (E.18), we can
ignore the last term.

We now turn to simplify Ex

[
exp

(∑
z∈Ztrain αz log p(z|x)

)]
using the expression above.

Ex

[
exp

(∑
z∈Ztrain

αz log p(z|x)
)]

= Ex

[
exp

(∑
z∈Ztrain

αz log p̂(z|x)
)]

= Ex

[
exp

(∑
z∈Ztrain αz

(
− ⟨1, Ê(x, z)⟩ − log M̂(z) + log p(z)

))
∑

z̃∈Ztrain exp
(
− ⟨1, Ê(x, z̃)⟩ − log M̂(z̃) + log p(z̃)

)]

= Ex

[
exp

(∑
z∈Ztrain αz

(
− ⟨1, Ê(x, z)⟩

)
∑

z̃∈Ztrain exp
(
− ⟨1, Ê(x, z̃)⟩ − log M̂(z̃) + log p(z̃)

)] exp(∑
z∈Ztrain

αz log
(p(z)
M̂(z)

))

= Ex

[
exp

(
− ⟨1, Ê(x, z′)⟩

)
∑

z̃∈Ztrain exp
(
− ⟨1, Ê(x, z̃)⟩ − log M̂(z̃) + log p(z̃)

)] exp(∑
z∈Ztrain

αz log
(p(z)
M̂(z)

))
= Q̂(z′) exp

(∑
z∈Ztrain

αz

(
− log M̂(z) + log p(z)

))
(E.20)

141

Supplementary Material: Compositional Generalization with Additive Energy Models

In the above simplification, we use Q̂(z′) from (4.3.1). We now substitute (E.20), (E.19)
into (E.18) to obtain.

p(z′|x) = Softmax
(
log p(z′) +

∑
z∈Ztrain

αz

(
− ⟨1, Ê(x, z)⟩

)
− log Q̂(z′)

)
= Softmax

(
log p(z′)− ⟨1, Ê(x, z′)⟩ − log Q̂(z′)

) (E.21)

Note that the RHS is equal to our estimator p̃(z′|x) (4.5). Therefore, we have established that
p(z′|x) = p̃(z′|x) ∀z′ ∈ Aff(Ztrain) whenever p(z|x) = p̂(z|x) ∀z ∈ Ztrain. Hence proved.

142

Supplementary Material: Compositional Generalization with Additive Energy Models

Group (y, a) Training Validation Test

(0, 0) 3498 467 2255
(0, 1) 184 466 2255
(1, 0) 56 133 642
(1, 1) 1057 133 642

Table E.1: Statistics for each group across the different splits for Waterbirds benchmark.

Group (y, a) Training Validation Test

(0, 0) 71629 8535 9767
(0, 1) 66874 8276 7535
(1, 0) 22880 2874 2480
(1, 1) 1387 182 180

Table E.2: Statistics for each group across the different splits for CelebA benchmark.

Group (y, a) Training Validation Test

(0, 0) 784 127 273
(0, 1) 507 75 191
(1, 0) 196 33 65
(1, 1) 789 114 345

Table E.3: Statistics for each group across the different splits for MetaShift benchmark.

E.5 Experiments

E.5.1 Dataset Details

Waterbirds [Wah et al., 2011]. The task is to classify land birds (y = 0) from water birds
(y = 1), where the spurious attributes are land background (a = 0) and water background
(a = 1). Table E.1 provides details regarding the statics of each factor z = (y, a) in the
dataset.

CelebA [Liu et al., 2015]. The task is to classify blond hair (y = 1) from non-blond hair
(y = 0), where the spurious attribute is gender, female (a = 0) and male (a = 1). Table E.2
provides details regarding the statics of each factor z = (y, a) in the dataset.

MetaShift [Liang and Zou, 2022]. The task is to classify cats (y = 0) from dogs (y = 1),
where the spurious attribute is background, indoor (a = 0) and outdoor (a = 1). Table E.3
provides details regarding the statics of each factor z = (y, a) in the dataset.

143

Supplementary Material: Compositional Generalization with Additive Energy Models

E.5.2 Additional Results

Table E.4 and Table E.5 present the results for the CelebA and MetaShift benchmark respec-
tively. We similar trends as with the Waterbirds benchmark (Table 4.1) that the proposed
AddEnergy method outperforms the baselines for worst group accuracy prediction in almost
all the scenarios.

Removed (y, a) Method Average Acc Worst Group Acc

(0, 0) ERM 0.74 (0.01) 0.34 (0.0)
(0, 0) GroupDRO 0.83 (0.0) 0.73 (0.02)
(0, 0) AddEnergy 0.86 (0.0) 0.82 (0.0)

(0, 1) ERM 0.91 (0.0) 0.59 (0.01)
(0, 1) GroupDRO 0.81 (0.01) 0.68 (0.02)
(0, 1) AddEnergy 0.83 (0.03) 0.74 (0.02)

(1, 0) ERM 0.87 (0.0) 0.10 (0.0)
(1, 0) GroupDRO 0.88 (0.0) 0.73 (0.02)
(1, 0) AddEnergy 0.73 (0.13) 0.69 (0.13)

(1, 1) ERM 0.94 (0.0) 0.15 (0.01)
(1, 1) GroupDRO 0.93 (0.0) 0.42 (0.01)
(1, 1) AddEnergy 0.87 (0.0) 0.78 (0.01)

Table E.4: Results for compositional generalization on the CelebA benchmark. The first
column describes the factors that were dropped during training. The performance for both
the metrics is denoted as mean ± standard error over 3 random seeds on the test dataset.

144

Supplementary Material: Compositional Generalization with Additive Energy Models

Removed (y, a) Method Average Acc Worst Group Acc

(0, 0) ERM 0.87 (0.0) 0.82 (0.0)
(0, 0) GroupDRO 0.85 (0.01) 0.81 (0.01)
(0, 0) AddEnergy 0.85 (0.0) 0.80 (0.01)

(0, 1) ERM 0.85 (0.01) 0.45 (0.04)
(0, 1) GroupDRO 0.89 (0.0) 0.72 (0.0)
(0, 1) AddEnergy 0.91 (0.0) 0.78 (0.01)

(1, 0) ERM 0.89 (0.0) 0.48 (0.0)
(1, 0) GroupDRO 0.89 (0.0) 0.60 (0.01)
(1, 0) AddEnergy 0.86 (0.0) 0.71 (0.0)

(1, 1) ERM 0.82 (0.0) 0.64 (0.01)
(1, 1) GroupDRO 0.85 (0.0) 0.77 (0.0)
(1, 1) AddEnergy 0.89 (0.01) 0.76 (0.03)

Table E.5: Results for compositional generalization on the MetaShift benchmark. The first
column describes the factors that were dropped during training. The performance for both
the metrics is denoted as mean ± standard error over 3 random seeds on the test dataset.

145

	Abstract
	Introduction
	Background
	Cause-Effect Models
	Fundamental Concepts
	Causal Discovery
	Causal Inference with Observational Data

	Disentangled Representation Learning
	Problem Setup
	Independent Component Analysis (ICA)
	Non-Linear ICA with Auxiliary Information
	Metrics for Disentanglement

	Towards efficient representation identification in supervised learning
	Introduction
	Problem Setup
	Identifiability Analysis of IC-ERM
	Methodology: Proposed Implementation for IC-ERM
	Empirical Findings
	Experiment Setup
	Results

	Conclusion

	Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
	Introduction
	Background & Literature review
	Problem Setup
	Identifiability Analysis of Additive Decoders
	Latent Identification
	Cartesian-product extrapolation

	Experiments
	Results

	Conclusion

	Future Work: Compositional Generalization with Additive Energy Models
	Introduction
	Characterizing Extrapolation for Discrete Factors
	Path Connected Support for Discrete Factors
	Affine Hull Extrapolation

	Extrapolation via Additive Energy Models
	Extrapolation for Classification Problems

	Experiments
	Implementation of Proposed Approach
	Setup
	Preliminary Results

	Future Directions

	List of Contributions
	Timeline
	Supplementary Material: Mathematical Preliminaries
	Measure Theory

	Supplementary Material: Background
	Backdoor estimator for ATE
	Local vs Global Disentanglement
	Indeterminacy in latent identification with reconstruction objective
	Proof of Proposition 1.2.4 (Linear ICA)
	Non-Linear ICA Using Auxiliary Variables and Contrastive Learning
	Weakly-supervised disentanglement without compromises

	Supplementary Material: Towards efficient representation identification in supervised learning
	Proof for Linear Identification with ERM.
	Proof of Theorem 2.3.3: IC-ERM (case k=d)
	Proof of Theorem 2.4.1: ERM-ICA (Case k=d)
	Identification with fewer tasks than the latent dimension
	Proof of Theorem C.4.5: IC-ERM for the case k=1
	Experiments: Implementation Details

	Supplementary Material: Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
	Identifiability and Extrapolation Analysis
	Useful definitions and lemmas
	Proof of Theorem 3.4.4: Local Disentanglement
	Sufficient nonlinearity v.s. sufficient variability in nonlinear ICA with auxiliary variables
	Proof of Theorem 3.4.6: Global Disentanglement
	Injectivity of object-specific decoders v.s. injectivity of their sum
	Proof of Corollary 3.4.8: Cartesian-Product Extrapolation

	Experiments
	Training Details
	Datasets Details
	Evaluation Metrics
	Boxplots for main experiments (Table 3.1)
	Additional Results: BlockLatents Dataset
	Disconnected Support Experiments
	Additional Results: ScalarLatents Dataset

	Supplementary Material: Compositional Generalization with Additive Energy Models
	Evaluating additive functions on affine-hull
	Proof for thm:add-energy-randomly-sampled-affine-hull
	Proof for Theorem 4.3.2: Generative Case
	Proof for Theorem 4.3.5: Discriminative Case
	Experiments
	Dataset Details
	Additional Results

