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Covariate Shift

Training Samples Test Samples

Source: Generalization and Robustness Implications in Object-Centric Learning by Dittadi et al. (2022)

Hypothesis: Learning disentangled representations can allow us to efficiently adapt to
covariate shifts as it changes mechanisms in a sparse manner



Compositional Shift

Training Test
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Source: Causal Triplet by Liu et al. (2023)

Hypothesis: Learning disentangled representations can allow us to efficiently

extrapolate to novel compositions




Distribution Shifts in SCMs

environment e = 1: environment e = 2: environment e = 3:
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Source: Causal Inference using Invariant Prediction by Peters et al. (2015)

* Independent Causal Mechanisms (ICM): Changing one causal mechanism leads to no
change in the other causal mechanisms

e Sparse Mechanism Shift: Effect of interventions is modular in structural causal models
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Disentangled Representation Learning

Input Latent Factors of Variations

Color
9
Color
B2
d

e Setup: x = g(z) where 7 € R are the latent (causal) factors of the data generation

process (DGP), that are transformed to observations x € | d,

e Goal: Invert the DGP to get latent factors (z) from observations (x)
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Indeterminacy in Latent Recovery

Input Latent Factors of Variations

Color
. o

Color

BZ

) and the optimal decoder

* Reconstruction Objective: Optimal encoder (]? ' R% — |

(g : 1 % — R%) satisfy the following.

= x=2feN|P=0 = t=v(@) @) =8"'og(2)




Indeterminacy in Latent Recovery

Input Latent Factors of Variations

Color
e
Color
B2

* We need to constrain the indeterminacy in latent recovery; Z = v(z) = ¢ s 2(2)

* Both (f, 2) and (f, g) explain data equally well, however, learned latents Z might be
a complex transformation of true latents 7



Latent Identification

Input Latent Factors of Variations
True Encoder: f(x)

z = |Locg, Colg , Locg , Col |

Learned Encoder: f(x) < = [Locy,, Coly,, Colg,, Loc |

* Permutation & Scaling Identification: Z = I1 o A z+ b where Il is permutation matrix
and A is invertible diagonal matrix

* Local Disentanglement: Z = v(z) where Jacobian of v is permuted diagonal matrix



How to achieve identification guarantees?

 Constraints on the mixing function (g) and learned decoder (g)

e Constrains on the latent distribution ([P(Z)) and enforcing learned latents (Z = v(z))
to satisfy them as well



How to achieve identification guarantees?

* Linear ICA:
e Constrain g, 2 to be linear functions

e Leads to linear identification as v(z) = 87! o g(z) is a linear function

e Constrain z, Z to have mutually independent components and all components of 7

dare non-gaussian
 Further restricts the linear v(z) to permutation & scaling matrix.
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Solving Non-linear ICA

Challenging Common Assumptions in the Unsupervised Learning of
Disentangled Representations

Francesco Locatello ' 2 Stefan Bauer? Mario Lucic® Gunnar Riitsch! Sylvain Gelly® Bernhard Scholkopf?
Olivier Bachem’

Unlike linear ICA, restricting Z, 7 to have mutually independent components is

not sufficient to guarantee disentanglement for non-linear ICA!
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Today's Talk

Disentanglement with Auxiliary Information

Towards Efficient Representation Identification in Supervised Learning

Kartik Ahuja’, Divyat Mahajan’, Vasilis Syrgkanis, loannis Mitliagkas
Conference on Causal Learning and Reasoning [CleaR 2022]

Unsupervised Disentanglement & Cartesian-Product Extrapolation

Additive Decoders for Latent Variables Identification and Extrapolation

Sébastien Lachapelle”, Divyat Mahajan’, loannis Mitliagkas, Simon Lacoste-Julien
Advances in Neural Information Processing Systems [NeurlPS 2023 (Oral)l

Extrapolation with Discrete Factors

Compositional Generalization with Additive Energy Models
Ongoing work in collaboration with Kartik Ahuja, loannis Mitliagkas, Mohammad Pezeshki, Pascal Vincent
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Other Contributions

Causal Inference with Observational Data

Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation
Divyat Mahajan, loannis Mitliagkas, Brady Neal, Vasilis Syrgkanis
International Conference on Learning Representations [ICLR 2024 (Spotlight)]

Disentanglement with Interventional Data

Interventional Causal Representation Learning
Kartik Ahuja, Divyat Mahajan, Yixin Wang, Yoshua Bengio
International Conference on Machine Learning [ICML 2023 (Oral)l

Benefits of Disentanglement for Downstream Tasks

Synergies between Disentanglement and Sparsity in Multi-Task Learning

Sébastien Lachapelle”, Tristan Deleu”, Divyat Mahajan, loannis Mitliagkas, Yoshua Bengio,
Simon Lacoste-Julien, Quentin Bertrand

International Conference on Machine Learning [ICML 2023
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Towards Efficient Representation Identification in
Supervised Learning

Kartik Ahuja®, Divyat Mahajan™, Vasilis Syrgkanis & loannis Mitliagkas

Conference on Causal Learning and Reasoning (CLeaR) 2022

*Equal contribution
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Non Linear ICA with Auxiliary Information

Z — (Zla “'9Zd)

°\ Latent Variable: Mutually independent & Non-Gaussian
Auxiliary Information: Y e R*& Z L N

X <« g(Z)

Observed non-linear mixing of latents, g is bijection



Independence Constrained ERM

Model: Wo O

W € R : Linear Classifier
O € # 4 : Non-Linear Representation

N
Empirical Risk Minimization (ERM): min Z f(W o D(x)), yi)
WeRXk deH 4 -

N

IC-ERM: min Z 4 (Wo D(x,), yl-) s.t. Components of ®(x) are i.i.d.

WeR™ @ -

16



ldentification with IC-ERM

Assumption: Dimension of the label (k) is equal to the dimension of the latent (d)

Theorem (Informal): Under the above assumption as well as those on the
data generation process (mutual independence of Z), we have the following:

e ERM: Optimal solutions identify true latents up to linear transformation
e |C-ERM: Optimal solutions identify true latents up to permutation & scaling

Note: We also present identification results in the paper when k < d
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Experiments

Label Prediction 100 Latent Prediction
1.0
75
~ 0.8 s 50 _
25 Jmm—  Emm—— - c = N
0.6
0
9)2 %1 50 9)e Y 50
Number of Tasks Number of Tasks
= = ERM ERM-ICA == ERM-PCA = == ERM ERM-ICA === ERM-PCA

Results for regression task with latent dimension d = 50.

Disentanglement performance (MCC) improves as we observe more tasks.
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Extending theory beyond mutual independence

Assumption: Latent Variables Z are mutually independent
Solution: Assume 1 to be sparsewhereY <« 1 Z+ N

Synergies between Disentanglement & Sparsity:
Generalization & Identifiability in Multi-Task Learning

Sébastien Lachapelle®, Tristan Deleu®, Divyat Mahajan, loannis Mitliagkas, Yoshua Bengio,
Simon Lacoste-Julien & Quentin Bertrand

*Equal contribution

International Conference on Machine Learning (/ICML) 2023
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Can we identify latents without auxiliary information?



Additive Decoders for Latent Variables Identification
and Cartesian-Product Extrapolation

Sébastien Lachapelle®, Divyat Mahajan™, loannis Mitliagkas & Simon Lacoste-Julien

Neural Information Processing Systems (NeurlPS) 2023 (Oral)

*Equal contribution
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Additive Decoders
x=g@) = ) g¥z)

Be9s

Observation Latent Partitionof {1,...,d_}

e.g. an image Factors eg B ={{12).{3.4)) Sub-blocks of 7

Example: Images of moving balls

X = g(Z) g(Bl)(Zl) g(Bz)(ZZ)

Zgl — (ZpZz) Coordinates of
— -4 LB, = (239 Z4) Coordinates of
g(B) Block-specific Decoder
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Contribution

We introduce additive decoders: a simple architecture similar to object-centric
decoders for which we can prove both disentanglement and extrapolation guarantees.

23



Decoder Architecture in Object-Centric Learning

SLOT ATTENTION
L
T SLOT
@ . || | DECODER
L]




Block Disentanglement

A\

e Learned Encoder: f(x)
. Learned Additive Decoder: g(z) = Z §(B)(ZB)
Be%

If we optimise reconstruction loss perfectly, i.e., E[ | | x — §(f(x)) I|]=0,
can we guarantee disentanglement of latent blocks?

o

L» 3 Disentangled J

g(\z)\

X
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Definition of Block Disentanglement

Learned decoder ¢ is disentangled w.r.t ground-truth decoder g

if the learned block-specific decoders “imitate” the ground-truth ones
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Definition of Block Disentanglement

Learned decoder ¢ is disentangled w.r.t ground-truth decoder g

if the learned block-specific decoders “imitate” the ground-truth ones

Precisely, for all B € 9 we have v, /(2) =V, (zp)

A(B)(/ﬂ(B))( (B )(Z)) + C(Zi\
Permutation that sends Invertible Z cB) =

blocks to blocks, i.e., z(B) € 9 Transformation BER
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Local & Global Disentanglement

Local Disentanglement: z(B) depends on 7
Global Disentanglement: 7(B) independent of 7

Local Disentanglement: D, v, 5(2) =0V i€ n(B),] B

The permutation map can vary with samples in the case of local disentanglement
No uniqgue mapping between the learned and true block decoders!
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Latent Identification Guarantee

Theorem (Informal): Under the following assumptions

, Data Generation Process is additive, i.e, x = Z gP(zp)
Be3A

e Learned decoder is additive as well with total latent partitions as | % |

e Ground-truth decoder is sufficiently non-linear (see paper)

* Block-specific decoders g(B), 5B) are injective (for global disentanglement)

Then optimal reconstruction loss (E[ | |x — 8(f(x))||]) implies block disentanglement

We make no distributional assumptions on latent factors!
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General Support for Latents

The assumptions made on the support of the distribution of latent factors

e Regularly Closed (For both local and global disentanglement)
* Need this to define derivative uniquely over the support of training data

e Path-Connected (Only for global disentanglement)

Path-connected Not path-connected

V=
o =

Regularly
closed

Not regularly
closed

N



Extrapolation with Additive Decoders



Cartesian Product Extrapolation

7 frain — Support of learned latent factors observed during training

Cartesian Product Extrapolation:

CPE@(Z tmin) — H Zémin where Zémin — {23 ‘ = Ztmin}
Be3A
Example:

Ztmin CP Egg( Z tmin)

Corollary (Informal): Under same assumptions as previous theorem, the learned decoders

imitate ground-truth decoders not only over Z”“" but also over CPE (7 """




Experiments




Extrapolation

34

Scalar Latent Dataset:

* Balls move only along y-axis

* Remove images where both balls
have high y-coordinate to get
L-shaped training support

Ztmin



Extrapolation

Learned Latent Space
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Generated Images

Disentangled

Changing Latent 1 only
changes the blue ball

Entangled
!!!!!l

1 |- |« Changing Latent 1
changes both the balls



Extrapolation
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Generated Images
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Extrapolation
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Limitations of Additive Decoders




No interaction between latent factors

x = g(z1) + g(2) ><
X = ml(Z) © g(zy) + mz(Z) © g(2) \/

Additive Decoders cannot model images with occlusions!




Can we consider more expressive function classes
for provable extrapolation?



Compositional Generalization with Additive Energy Models

Ongoing work with Kartik Ahuja, loannis Mitliagkas, Mohammad Pezeshki, Pascal Vincent

Université f”\

de Montréal N\ Meta Al
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Additive Energy Models

dZ
p(x|z) = exp( —<1,E(x,2) > ) where < 1, E(x,2) > = ZEi(x, Z;)
i=1

ditional distribut "y . . '
Cond onat distrbution Partition Function Energy Function =nergy Function
of data given factors for each component

* Assumption: The energy function can be decomposed as addition of energies with
different components of 7

* More expressive than additive decoders; can model interaction between components of

z via the partition function B(z) = J'exp( —<1,E(x,2) > )dx
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Contribution

We prove extrapolation guarantees for discrete factors with additive energy models

Note: We assume the factors of variations 7 are observed to focus on extrapolation

aspect of additive energy models.
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Challenges with Disconnected Support

dZ
Lets revisit Cartesian-Product Extrapolation with additive functions g(z) = 2 2(z;)
i=1

where each function g; : R — | % takes component Z; as input.

CP E(Ztmm) — Ztmm X Ztmm X Ztmm

Cannot extrapolate to CPE(Z"*'™)
—
7 irain
Disconnected Support
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Challenges with Disconnected Support

e Disconnected support makes it hard to extrapolate to CPE(Z"™)

* This is a fundamental challenge when the factors 7 are discrete!

Ztmin

Cannot extrapolate to CPE(Z"*™) E
—

Disconnected Support &
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Affine Hull Extension

0,1 1,1 _
o g(1,1) = g(1,0) + g(0,1) — £(0.0)
Extrapolation to novel discrete factors possible in this case!
(0, 0) (1, O)
Training Factors Novel Factor

Affine Hull Extension of Training Support: Aff(Ztmm)

Let each discrete component z; takes one of m possible values.

Denote by 7(z;) € |

" as the one-hot transformation of z; ; 7(z) = [z(z;), :*-, T(Zdz)] c |

Then V z € AfAZ"*) we have 7(7) = Z a,7(Z) where Z a, = 1

= Ztmin = Ztmin

46
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Can Affine Hull equal Cartesian Product?

e As we add more factors to Z", then Aff(Z"*") would increase as well

« Can we show that after enough samples Af(Z"*") spans the full grid Xfil |m] ?

Theorem: Assume d, = 2, i.e, 2 = (Z;, %) where each z; has m possible values.

. . |
If | Z"" | > 8¢ * mlog m , then Af(Z"*") = [m] X [m] with probability > 1 — —
C
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Affine Hull Extrapolation with Additive Functions

For all 7/ € AfA(Z"™), we have g(7') = Z a,g(z) ast(z) = 2 ,7(2)

ZEZtmin ZEZtmm

d d

True Function: g(z) = Z g(z)) Learned Function: g(z) = Z 2(z;)
i=1 =1
Corollary: If 2(z) = g(z) Vz € Z"*" then g(2) = 2(z) Vz € Af(Z"™*™)



Affine Hull Extrapolation with Additive Energy Models

True Model: p(x|z) = exp( —<1,E(x,2) > )

| .
Learned Model: p(x|2) == exp( —<1,E(x,2) > )
B(2)

Theorem: If p(x|2) = p(x|z) Vz € ZTan then p(x|z) =px|z) Vz € Aff(Ztm"”)
under the assumption of invariant support of p(x | z)
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Affine Hull Extrapolation for Discriminative Case
True Model:

p(z|x) = Softmax(log p(x|z) + logp(z)) where p(x|z) = Bzz) exp(— < LE(x,2) > )

Learned Model:

p(z|x) = Softmax(log p(x|z) + log p(z)) where p(x|z) = 13’: : exp( — < I,E(x, 7)) >)
Z

Corollary: If p(z|x) = p(z|x) Vz € Z"" then p(z|x) = p(z|x) Vz € A(Z"™)
under the assumption of invariant support of p(x | z)

Inferring partition function E(z) — Jexp( - <1, E(x, 7)) > )dx is challenging!
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Affine Hull Extrapolation for Discriminative Case

Learned Model: p(z|x) = SOftmax( — < 1,EAZ(x, z) > —log M(7) + logp(z))

where M(z) Is not constrained to be the partition function.

Theorem: If p(z|x) = p(z|x) Vz € Z"™" then p(z|x) = p(z|x) Vz € AF(Z™)
under the assumption of invariant support of p(x | z), where p(z | x) is defined as

p(z]x) = Softmax( — < 1LE(x2) > — log 0) + lc)gp(z))
exp( — < 1,E(x,z) > )

0(z) =

cwpringo| Y omexp( — < LE(x,2) > — log M(2) + log p(2)) -

ZE Ztmin
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Experiments: Compositional Distribution Shift

vvater vVater Uniform Unif
Background Background AHOHH

Land Land | |
Background Background | " omerm Jniform

Land Bird Water Bird Land Bird Water Bird
Train Distribution Test Distribution

 Factors 7 = (y, a) where y denotes the class label and a denotes the spurious attribute
e Compositional Shift: Z" £ 7! but 7' = Af(Z""*")
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Implementation of Proposed Approach

p(zlx) = Softmax( — < 1,E(x, z) > —log M(Z) - logp(z))

|

p(z]x) = Saftmax( - < W, dx) > — < W, p(x) > — log M(7) + logp(z))

@(x) : Representations via pretrained ResNet-50 architecture

Vo

Learnable Parameters: Wy, W . M

Learning Objective: min [, ) —logp(y,a|x)
W, W,.M



Results

Removed (y,a) | Method | Average Acc | Worst Group Acc
(0, 0) ERM 0.76 (0.0) 0.69 (0.0)
(0, 0) GroupDRO | 0.86 (0.0) 0.78 (0.0)
(0, 0) AddEnergy | 0.88 (0.0) 0.86 (0.0) \
(0, 1) ERM 0.71 (0.0) 0.38 (0.0)
(0, 1) GroupDRO | 0.79 (0.01) 0.41 (0.05)
0, 1 AddEne 0.87 (0.0 0.79 (0.01
(0, 1) ey (0.0 ( )\ Better worst group accuracy
(1, 0) ERM 0.81 (0.01) 0.1 (0.02) than baselines
(1, 0) GroupDRO | 0.92 (0.0) 0.74 (0.04) /
(1, 0) AddEnergy | 0.88 (0.0) 0.85 (0.0)
(1, 1) ERM 0.89 (0.0) 0.53 (0.0)
(1, 1) GroupDRO | 0.91 (0.0) 0.77 (0.04)
(1, 1) AddEnergy | 0.89 (0.0) 0.86 (0.0)

Results for the Waterbirds benchmark. The performance for both the metrics is
denoted as mean £ standard error over 3 random seeds on the test dataset
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Future Work

Planned experiments for the current method
p(z|x) = SOftmax< — < I,E(x, z) > —log M(Z) + logp(z))

* Experiment on more complex subpopulation shift benchmarks
e CivilComments, MultiNLI, NICO++, Causal Triplet

e Empirically verify the O(m log m) bound for the case of 2-dimensional factors
* Design synthetic image datasets where we can control factors z = (y, a)
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Future Work

Extrapolation without labelled factors z?

* A reasonable assumption is that we observe the class label (y) but not the spurious
attributes ((ay, -=-,a, _;) where z = (y,a, >, a,; _1)

e Similar setup explored in recent works; XRM (Pezeshki et al.), ULA(Tsirigotis et al.)
* However, their setup did not consider the extreme case of compositional shift

* Similar to disentanglement with weak supervision but our goal is to disentangle only
the quantization of spurious features!

56



Future Work
Disentanglement with Additive Energy Models?

* Perhaps assumptions similar to additive decoders can help
eV logp(x|2) =V logpx|z) = —-—<LExX2)>=-<1EXx2) >

* Empirical evidence for disentanglement with methods similar to additive energy
models in recent work by Liu et al.

Unsupervised Compositional Concept Discovery

1
Wi

a > e(at t | ) F)—
Diffusion Model . Score Cunsup
(Pre-trained) wk Composition
—> eg(xi,t| ) _)®_
Weighting

. Scores conditioned on
Unlabeled Images Xx; the discovered concepts Reconstructed Images
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Thank You!



Backup Slides




Linear Identifiability of ERM

R(f)

(Y — £(X)|I?]

[IPZ - fog(2)?
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S[||N||*]  (since Z L N and
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5[ N

2[IN|?] —2*E[(TZ — fog(Z))' N]

)



Linear Identifiability of ERM

R(f)

p.

p.

P

Minimum risk (R(f) =

1Y = FOI]

[II0Z - fog(2))?

[ITZ + N — fog(Z2)|?

|IrZ - fog(2)|

YRR

+E[|N||*]  (since Z L N and

[N ]°])

5[ N

—17Z=TZ

i(TZ — fog(Z))"N]

)



Linear Identifiability of ERM

R(f)

(1Y = £(X)17]
[ITZ+ N = fog(2)|]
2|ITZ — £ o g(2)|?| +E[IIN|*] - 2+E[(TZ - f 0 g(2))"N]

2(I0Z — fog(2)|?| +E[IN|?]  (since Z L N and E[N] = 0)

Minimum risk (R(f) = E[ | | V| &) —f=1Z
—17Z=TIZ

Since I" € R*is full column rank (k>d), we can find aset S of d rows
such that W = [l | . is invertible



Linear Identifiability of ERM

R(f)

p.

p.

P

Minimum risk (R(f) =

1Y — £(X)|]

[II0Z - fog(2))?

[Tz - fog(2)|

_|_

[ITZ + N — fog(Z2)|?

3[IIV]%] - 2%

[N

i(TZ — fog(Z))"N]

i[||N||?]  (since Z L N and E[N] = 0)

—1Z=IZ
—> W/ =W/

— 7= (W)"'wz
— 7 =AZ



Linear Identifiability of IC-ERM

R(f)

P .

(Y — £(X))]
[ITZ + N — fog(Z2)|?

2|[IPZ = f o g(Z)|| + E[IN|*] — 2+ E[(TZ - f o g(Z))"N]

p.

p.

P

[ITZ = Fog(2)|?| +E[|N|?]  (since Z L N and E[N] = 0)

Minimum risk (R(f) = E[| | V| &) —f=1Z
— 7 =AZ

7 has mutually independent components; similar to the Linear ICA problem!
Hence, A must be permutation & scaling matrix.



Datasets

Scalar Latent Dataset: Balls move only along y-axis

dim(Z) = 2 1
% = {{1},{2}) '

Block Latent Dataset: Balls move along both x and y-axis

dim(Z) = 4 —]
B ={{12},(34}} |«

Independent Case: Zp, 1 z Bo

Dependent Case: < B; 7‘K < Bo
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Disentanglement

Scalar Latent

Block Latent Block Latent
Independent Dependent

Non-Additive Decoder

Additive Decoder

Modified MCC score (Higher implies more disentangled)

......
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Proof Sketch

Samples from the CPE still have the support for marginal distributions!
Supp(Zg) = Supp(Zg)

Precisely, for all B € % we have

f(B)(ZB) — f#B) (Vas(2p) + B

Block decoders equality holds true for all blocks on samples from CPE
Additivity enables you to get final image via addition of block decoders!

Global Disentanglement is necessary for compositionality!
We need the learned block decoders to correspond in unique manner to true block decoders!
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Proof Sketch

20|z — f(g())[]* = E™||f(2) — F(@(F()II* =0,

f . Diffeomorpshim
g . continuous

fou(z) = f(z) Vz € 2™
Y P (vp() =) fP(zp)Vze 2™

BeB BeB

v:= f~1o fis a C2-diffeomorphism

j Derivative w.r.t Zj € J forsome J € &

ZZD FP) (vp(2))Djvi(z) = D; ) (25).

BeBieB
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Proof Sketch

fov(z) = f(z)Vz € Ztain
Z fP (vp(z)) = Z fB)(zp) Vz € Z'min,

BeB BeB

v:=Ff1lo f is a C?-diffeomorphism

j Derivative w.r.t Zj € J forsomeJ € &

Z Y Dif'®)(vp(2))Djvi(z) = D; V().

BeBieB

j Derivative w.r.t z; € J' for some J' &€ RBI{J}

Z Z D;fB)(vg(2) D2 ii(2) + Z D F P (vp(2))Djvi(z)Dvi(2z)| =0

BeBieB L VeB
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Proof Sketch
Z ZDZf(B) (vB(2))D;v;i(=

BeBieB

> Y | DifP(vp(2))

M(z) := [[d’i(z)],,;eB, bi(2)]ieB; [Cz ir (2 )](i,z")eBi]BeBa

(B)

Jf(J)(ZJ)

j Derivative w.rt z, € J' forsome J € RB/{J}

v;(2) + Z D2 f(B)

'EB

(2))Djvir(2)Djvi(z)| =0

j Simplifying the expression

v(z) k) =0.

)267

o

(B)

/1

)ZE B> (D2

(B)(

ZB))(i,i")e B2 ) BeB



Proof Sketch

M (z)w(v(z),k) =0.
w(z,k) = (Dify" (28))icn, (D} £y (28))ien, (D24 £17) (28)) (iine B2 ) Bes

M (2) := [[@i(2)]ic, [bi(2))ieB, €, (2)],i)ep2 | BeB

1 W) = W@, 1), -, w(n(2), d.)]

W('v(z:))M(z)T =0

Assumption of sufficient non-linearity on f implies W(v(z)) has full-column rank



Proof Sketch

W (v(z))M(z)T =0
Assumption of sufficient non-linearity on fimplies W(v(z)) has full-column rank
‘ M (2) := [[d:(2))ies, [Bi(2)]ien, 6 (2)) s iye 2 | pen
M(z)' =0

&

Vie{l,...,d.}, b;(z) =0,
Vi € {1, ¢ o ,dz},V(j,j,) = Sc, Dj’Uz'(Z)Dj/’UZ'(Z) = ()

The final equality can be implied further to show Dv(z) is &%-block permutation matrix
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Independence Constrained ERM

Representation
Network
@ @ ) Linear Layer N
ERM min f(Wo D(x; )
® e '® o ka"DE%Di:Zl (x;), y;
(U (U @
@ @ _Linear Layer N
- min f(WoCDxl-, l-)
IC-ERM O——0——>0—0 | min ; (%), y

® ® ® ®(X) is i.i.d.

Representation

Network 74



