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Covariate Shift
Training Samples Test Samples

Source: Generaliza/on and Robustness Implica/ons in Object-Centric Learning by Di@adi et al. (2022)         

Hypothesis: Learning disentangled representa/ons can allow us to efficiently adapt to 
covariate shiJs as it changes mechanisms in a sparse manner
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Compositional Shift

Source: Causal Triplet by Liu et al. (2023)         

Hypothesis: Learning disentangled representa/ons can allow us to efficiently 
extrapolate to novel composi/ons
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Distribution Shifts in SCMs 

Source: Causal Inference using Invariant Predic/on by Peters et al. (2015)         

• Independent Causal Mechanisms (ICM): Changing one causal mechanism leads to no 
change in the other causal mechanisms 

•Sparse Mechanism Shi;: Effect of interven/ons is modular in structural causal models
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Disentangled Representation Learning

Input Latent Factors of Varia/ons

Loc 
B1 

Loc  
B2 

Color 
B1 

Color  
B2 

•Setup:  where  are the latent (causal) factors of the data genera/on 
process (DGP), that are transformed to observa/ons   

•Goal: Invert the DGP to get latent factors ( ) from observa/ons ( ) 

x = g(z) z ∈ ℝdz

x ∈ ℝdx

z x
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Indeterminacy in Latent Recovery
Input Latent Factors of Varia/ons

Loc 
B1 

Loc  
B2 

Color 
B1 

Color  
B2 

•Reconstruc?on Objec?ve: Op/mal encoder ( ) and the op/mal decoder 
( ) sa/sfy the following. 

            

̂f : ℝdx → ℝdz

̂g : ℝdz → ℝdx

𝔼x∼X | |x − ̂g( ̂f(x)) | |2 = 0 ⟹ ̂z = v(z) ; v(z) = ̂g−1 ∘ g(z)
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Indeterminacy in Latent Recovery
Input Latent Factors of Varia/ons

Loc 
B1 

Loc  
B2 

Color 
B1 

Color  
B2 

•We need to constrain the indeterminacy in latent recovery;  

•Both  and  explain data equally well, however, learned latents  might be 
a complex transforma/on of true latents  

̂z = v(z) = ̂g−1 ∘ g(z)

( ̂f, ̂g) ( f, g) ̂z
z
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Latent Identification 
Input Latent Factors of Varia/ons

•Permuta?on & Scaling Iden?fica?on:   where  is permuta/on matrix 
and  is inver/ble diagonal matrix 

•Local Disentanglement:  where Jacobian of  is permuted diagonal matrix 

̂z = Π ∘ Λ z + b Π
Λ

̂z = v(z) v

True Encoder:  f(x)

Learned Encoder:  ̂f(x)

z = [LocB1
, ColB1

, LocB2
, ColB2

]

̂z = [LocB2
, ColB1

, ColB2
, LocB1

]
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How to achieve identification guarantees?

•Constraints on the mixing func/on ( ) and learned decoder ( ) 

•Constrains on the latent distribu/on ( ) and enforcing learned latents ( ) 
to sa/sfy them as well 

g ̂g

ℙ(Z) ̂z = v(z)

̂z = v(z) = ̂g−1 ∘ g(z)
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How to achieve identification guarantees?

̂z = v(z) = ̂g−1 ∘ g(z)

•Linear ICA:   
•Constrain   to be linear func/ons 

•Leads to linear iden/fica/on as  is a linear func/on 

•  Constrain  to have mutually independent components and all components of  
are non-gaussian 
•Further restricts the linear  to permuta/on & scaling matrix. 

g, ̂g
v(z) = ̂g−1 ∘ g(z)

z, ̂z z

v(z)
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Solving Non-linear ICA

Unlike linear ICA, restric/ng  to have mutually independent components is 
not sufficient to guarantee disentanglement for non-linear ICA! 

Z, ̂Z
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Today’s Talk

Towards Efficient Representation Identification in Supervised Learning 
Kartik Ahuja*, Divyat Mahajan*, Vasilis Syrgkanis, Ioannis Mitliagkas 
Conference on Causal Learning and Reasoning [CleaR 2022]

Disentanglement with Auxiliary Informa/on

Additive Decoders for Latent Variables Identification and Extrapolation 
Sébastien Lachapelle*, Divyat Mahajan*, Ioannis Mitliagkas, Simon Lacoste-Julien 
Advances in Neural Information Processing Systems [NeurIPS 2023 (Oral)]

Unsupervised Disentanglement & Cartesian-Product Extrapola/on

Compositional Generalization with Additive Energy Models 
Ongoing work in collaboration with Kartik Ahuja, Ioannis Mitliagkas, Mohammad Pezeshki, Pascal Vincent

Extrapola/on with Discrete Factors  
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Other Contributions

Synergies between Disentanglement and Sparsity in Multi-Task Learning 
Sébastien Lachapelle*, Tristan Deleu*, Divyat Mahajan, Ioannis Mitliagkas, Yoshua Bengio,                 
Simon Lacoste-Julien, Quentin Bertrand 
International Conference on Machine Learning [ICML 2023]

Benefits of Disentanglement for Downstream Tasks

Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation 
Divyat Mahajan, Ioannis Mitliagkas, Brady Neal, Vasilis Syrgkanis 
International Conference on Learning Representations [ICLR 2024 (Spotlight)]

Causal Inference with Observa/onal Data

Interventional Causal Representation Learning 
Kartik Ahuja, Divyat Mahajan, Yixin Wang, Yoshua Bengio 
International Conference on Machine Learning [ICML 2023 (Oral)]

Disentanglement with Interven/onal Data
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Towards Efficient Representation Identification in 
Supervised Learning 

Kartik Ahuja*, Divyat Mahajan*, Vasilis Syrgkanis & Ioannis Mitliagkas 

Conference on Causal Learning and Reasoning (CLeaR) 2022
*Equal contribution
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Non Linear ICA with Auxiliary Information

Z = (Z1, ⋯, Zd)
Latent Variable:  Mutually independent & Non-Gaussian

Y ← ΓZ + N
Auxiliary Informa/on:  & Y ∈ Rk Z ⊥ N

X ← g(Z)
Observed non-linear mixing of latents,   is bijec/ong
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Independence Constrained ERM

Empirical Risk Minimiza?on (ERM):      min
W∈ℝd×k,Φ∈ℋΦ

N

∑
i=1

ℓ(W ∘ Φ(xi), yi)

IC-ERM: min
W∈ℝd×k,Φ

N

∑
i=1

ℓ(W ∘ Φ(xi), yi) s.t. Components of Φ(x) are i.i.d.

Model:   
  

  Linear Classifier  
    Non-Linear Representa/on 

W ∘ Φ

W ∈ ℝd×k :
Φ ∈ ℋΦ :
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Identification with IC-ERM

Theorem (Informal):  Under the above assump?on as well as those on the 
data genera/on process (mutual independence of Z), we have the following: 

•  ERM:       Op/mal solu/ons iden/fy true latents up to linear transforma?on 
•  IC-ERM:  Op/mal solu/ons iden/fy true latents up to permuta?on & scaling   

Note: We also present iden/fica/on results in the paper when  k < d

Assump?on: Dimension of the label (k) is equal to the dimension of the latent (d)
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Experiments

18

Results for regression task with latent dimension . 
  

Disentanglement performance (MCC) improves as we observe more tasks.
d = 50



Extending theory beyond mutual independence

Assump?on: Latent Variables  are mutually independentZ

19

Sébastien Lachapelle*, Tristan Deleu*, Divyat Mahajan, Ioannis Mitliagkas, Yoshua Bengio,   
Simon Lacoste-Julien & Quentin Bertrand

International Conference on Machine Learning (ICML) 2023
*Equal contribution

Synergies between Disentanglement & Sparsity: 
Generalization & Identifiability in Multi-Task Learning 

Solu?on: Assume   to be sparse where Γ Y ← ΓZ + N



Can we identify latents without auxiliary information?
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Additive Decoders for Latent Variables Identification 
and Cartesian-Product Extrapolation 

Sébastien Lachapelle*, Divyat Mahajan*, Ioannis Mitliagkas & Simon Lacoste-Julien

Neural Information Processing Systems (NeurIPS) 2023 (Oral)
*Equal contribution
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Additive Decoders
                           x = g(z) = ∑

B∈ℬ
g(B)(zB)

Observa/on 
e.g. an image

Latent  
Factors

Par//on of   
e.g. 

{1,…, dz}
ℬ = {{1,2}, {3,4}} Sub-blocks of z

Example:  Images of moving balls 

= +

ℬ = {{1,2}, {3,4}}
zB1

= (z1, z2)
zB2

= (z3, z4)
Coordinates of 

Coordinates of 

g(B) Block-specific Decoder

x = g(z) g(B1)(z1) g(B2)(z2)
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Contribution

  We introduce addi?ve decoders: a simple architecture similar to object-centric  
  decoders for which we can prove both disentanglement and extrapola?on guarantees.
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Decoder Architecture in Object-Centric Learning

  where  denote masking mechanism x = g(z) = ∑
B∈ℬ

m(B)(z) ⊙ g(B)(zB) m(B)

24

Object-centric learning approaches have shown impressive performance at 
disentanglement without using any weak supervision!



Block Disentanglement
•  Learned Encoder:  

•  Learned Addi/ve Decoder:  

̂f(x)
̂g(z) = ∑

B∈ℬ
̂g(B)(zB)

If we op/mise reconstruc/on loss perfectly, i.e.,  , 
can we guarantee disentanglement of latent blocks? 

𝔼[ | |x − ̂g( ̂f(x)) | | ] = 0

x

̂f
̂z

̂g(B1)

̂g(B2)

Disentangled

25



Definition of Block Disentanglement

Learned decoder    is disentangled w.r.t ground-truth decoder   
 if the learned block-specific decoders “imitate” the ground-truth ones 

̂g g
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Definition of Block Disentanglement

Learned decoder    is disentangled w.r.t ground-truth decoder   
 if the learned block-specific decoders “imitate” the ground-truth ones 

̂g g

Precisely, for all   we have   =  B ∈ ℬ vπ(B)(z) v̄πB
(zB)

 ̂g(B)(zB) = g(π(B)) (vπ(B)(z)) + c(B)

Permuta/on that sends 
blocks to blocks, i.e., π(B) ∈ ℬ

Inver/ble 
Transforma/on ∑

B∈ℬ
c(B) = 0
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Local & Global Disentanglement

Local Disentanglement:  depends on  
Global Disentanglement:  independent of  

π(B) z
π(B) z

The permuta/on map can vary with samples in the case of local disentanglement 
No unique mapping between the learned and true block decoders!

28

Local Disentanglement:      Di,jvπ(B)(z) = 0 ∀ i ∈ π(B), j ∉ B



Latent Identification Guarantee

 Theorem (Informal): Under the following assump/ons 

•Data Genera/on Process is addi/ve, i.e,  

•  Learned decoder is addi/ve as well with total latent par//ons as  
•Ground-truth decoder is sufficiently non-linear (see paper) 

•Block-specific decoders  are injec/ve  (for global disentanglement) 

Then op/mal reconstruc/on loss ( ) implies block disentanglement

x = ∑
B∈ℬ

g(B)(zB)

|ℬ |

g(B), ̂g(B)

𝔼[ | |x − ̂g( ̂f(x)) | | ]

We make no distribu?onal assump?ons on latent factors!
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General Support for Latents
The assump/ons made on the support of the distribu/on of latent factors 

•Regularly Closed (For both local and global disentanglement) 
•Need this to define deriva/ve uniquely over the support of training data 

•Path-Connected (Only for global disentanglement)
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Extrapolation with Additive Decoders
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Cartesian Product Extrapolation

 Support of learned latent factors observed during training 

Cartesian Product Extrapola?on:  

  where  

ℤ̂ train =

CPEℬ(ℤ̂ train) = ∏
B∈ℬ

ℤ̂ train
B ℤ̂ train

B = { ̂zB | ̂z ∈ ℤ̂train}

Corollary (Informal): Under same assump/ons as previous theorem, the learned decoders  
imitate ground-truth decoders not only over  but also over ℤ̂train CPEℬ(ℤ̂ train)

Example:

ℤ̂train CPEℬ(ℤ̂ train)
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Experiments
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Extrapolation

Scalar Latent Dataset:  
•Balls move only along y-axis 

•Remove images where both balls  
   have high y-coordinate to get  
   L-shaped training support 

ℤ̂train
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Extrapolation

Addi?ve 
Decoder

Non-Addi?ve 
Decoder

Learned Latent Space Generated Images

Disentangled

Entangled

Changing Latent 1 only  
changes the blue ball

Changing Latent 1  
changes both the balls
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Extrapolation

Addi?ve 
Decoder

Non-Addi?ve 
Decoder

Learned Latent Space Generated Images

Disentangled

Entangled

These samples were never 
seen during training

Cannot generate 
unseen samples
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Extrapolation

Addi?ve 
Decoder

Non-Addi?ve 
Decoder

Learned Latent Space Generated Images

Disentangled

Entangled

These samples were never 
seen during training

Cannot generate 
unseen samples
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Limitations of Additive Decoders
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No interaction between latent factors

Addi/ve Decoders cannot model images with occlusions! 

x = g(z1) + g(z2)

x = m1(z) ⊙ g(z1) + m2(z) ⊙ g(z2)

39



Can we consider more expressive function classes  
for provable extrapolation?
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Compositional Generalization with Additive Energy Models 

Ongoing work with Kartik Ahuja, Ioannis Mitliagkas, Mohammad Pezeshki, Pascal Vincent

41



Additive Energy Models

 where  p(x |z) = 1
B(z) exp( − < 1 , E(x, z) > ) < 1 , E(x, z) > =

dz

∑
i=1

Ei(x, zi)

42

Condi/onal distribu/on  
of data given factors Par//on Func/on Energy Func/on Energy Func/on  

 for each component 

•Assump?on: The energy func/on can be decomposed as addi/on of energies with 
different components of  
•More expressive than addi/ve decoders; can model interac/on between components of 

 via the par//on func/on 

z

z B(z) = ∫ exp( − < 1 , E(x, z) > )dx



Contribution

  We prove extrapola/on guarantees for discrete factors with addi?ve energy models

43

Note: We assume the factors of varia/ons  are observed to focus on extrapola/on 
aspect of addi/ve energy models.  

z



Challenges with Disconnected Support

44

Lets revisit Cartesian-Product Extrapola/on with addi/ve func/ons   

where each func/on    takes component   as input. 

           

g(z) =
dz

∑
i=1

gi(zi)

gi : ℝ → ℝdx zi

CPE(ℤtrain) = ℤtrain
1 × ℤtrain

2 × ⋯ℤtrain
dz

ℤ̂train

Disconnected Support

Cannot extrapolate to  CPE(ℤtrain)



Challenges with Disconnected Support

45

ℤ̂train

Disconnected Support

Cannot extrapolate to  CPE(ℤtrain)

•Disconnected support makes it hard to extrapolate to  

•This is a fundamental challenge when the factors  are discrete!

CPE(ℤtrain)
z



Affine Hull Extension

46

(0, 0)

(0, 1)

(1, 0)

(1, 1) g(1,1) = g(1,0) + g(0,1) − g(0,0)
Extrapola/on to novel discrete factors possible in this case!

Training Factors Novel Factor

Affine Hull Extension of Training Support:  

Let each discrete component  takes one of m possible values. 
Denote by  as the one-hot transforma/on of  ;  

Then  we have  where  

          

Aff(ℤtrain)
zi

τ(zi) ∈ ℝm zi τ(z) = [τ(z1), ⋯, τ(zdz
)] ∈ ℝdz×m

∀ z ∈ Aff(ℤtrain) τ(z′ ) = ∑
z∈ℤtrain

αzτ(z) ∑
z∈ℤtrain

αz = 1



Can Affine Hull equal Cartesian Product?

47

Theorem: Assume , i.e,  where each  has  possible values.  

If  , then  with probability  

dz = 2 z = (z1, z2) zi m
|ℤtrain | > 8c * m log m Aff(ℤtrain) = [m] × [m] ≥ 1 − 1

c

•As we add more factors to , then  would increase as well 

•Can we show that aJer enough samples  spans the full grid   ?

ℤtrain Aff(ℤtrain)
Aff(ℤtrain) ×dz

i=1 [m]



Affine Hull Extrapolation with Additive Functions
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 For all ,  we have    as  

          

z′ ∈ Aff(ℤtrain) g(z′ ) = ∑
z∈ℤtrain

αzg(z) τ(z′ ) = ∑
z∈ℤtrain

αzτ(z)

True Func/on:       Learned Func/on:  

Corollary: If   then  
         

g(z) =
dz

∑
i=1

gi(zi) ̂g(z) =
dz

∑
i=1

̂gi(zi)

g(z) = ̂g(z) ∀z ∈ ℤtrain g(z) = ̂g(z) ∀z ∈ Aff(ℤtrain)



Affine Hull Extrapolation with Additive Energy Models
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True Model:            

       
Learned Model:         

p(x |z) = 1
B(z) exp( − < 1 , E(x, z) > )

p(x |z) = 1
B̂(z)

exp( − < 1 , Ê(x, z) > )

Theorem: If   then    
 under the assump/on of invariant support of   

         

p(x |z) = ̂p(x |z) ∀z ∈ ℤtrain p(x |z) = ̂p(x |z) ∀z ∈ Aff(ℤtrain)
p(x |z)



Affine Hull Extrapolation for Discriminative Case
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True Model:         

   where    

       
Learned Model:   

   where    

p(z |x) = Softmax(log p(x |z) + log p(z)) p(x |z) = 1
B(z) exp( − < 1,E(x, z) > )

̂p(z |x) = Softmax(log ̂p(x |z) + log p(z)) ̂p(x |z) = 1
B̂(z)

exp( − < 1,Ê(x, z) > )

Corollary: If   then    
 under the assump/on of invariant support of   

p(z |x) = ̂p(z |x) ∀z ∈ ℤtrain p(z |x) = ̂p(z |x) ∀z ∈ Aff(ℤtrain)
p(x |z)

Inferring par//on func/on  is challenging!B̂(z) = ∫ exp( − < 1 , Ê(x, z) > )dx



Affine Hull Extrapolation for Discriminative Case
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Learned Model:      

where  is not constrained to be the par//on func/on.

̂p(z |x) = Softmax( − < 1,Ê(x, z) > − log M̂(z) + log p(z))
M̂(z)

Theorem: If   then    
 under the assump/on of invariant support of , where  is defined as 

 

p(z |x) = ̂p(z |x) ∀z ∈ ℤtrain p(z |x) = p̃(z |x) ∀z ∈ Aff(ℤtrain)
p(x |z) p̃(z |x)

p̃(z |x) = Softmax( − < 1,Ê(x, z) > − log Q̂(z) + log p(z))

Q̂(z) = 𝔼x∼ptrain(x)[ exp( − < 1,Ê(x, z) > )
∑z̃∈ℤtrain exp( − < 1,Ê(x, z̃) > − log M̂(z̃) + log p(z̃)) ]



Experiments: Compositional Distribution Shift
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Land Bird Water Bird

Land  
Background

Water  
Background

Train Distribu?on

Land Bird Water Bird

Land  
Background

Water  
Background

Test Distribu?on

Majority

Minority

Uniform

UniformMajority

UniformMinority

Uniform

•Factors  where  denotes the class label and  denotes the spurious a@ribute 

•Composi/onal ShiJ:    but  

z = (y, a) y a
ℤtrain ≠ ℤtest ℤtest = Aff(ℤtrain)



Implementation of Proposed Approach
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̂p(z |x) = Softmax( − < 1,Ê(x, z) > − log M̂(z) + log p(z))

̂p(z |x) = Softmax( − < Wy, ϕ(x) > − < Wa, ϕ(x) > − log M̂(z) + log p(z))

 : Representa/ons via pretrained ResNet-50 architecture  

Learnable Parameters:   

Learning Objec/ve: 

ϕ(x)
Wy, Wa, M̂

min
Wy,Wa,M̂

𝔼p(y,a,x) − log ̂p(y, a |x)



Results

54

Results for the Waterbirds benchmark. The performance for both the metrics is 
denoted as mean ± standard error over 3 random seeds on the test dataset 

Be@er worst group accuracy  
than baselines



Future Work

55

•Experiment on more complex subpopula/on shiJ benchmarks 
•CivilComments, Mul/NLI, NICO++, Causal Triplet 

•Empirically verify the  bound for the case of 2-dimensional factors 
•Design synthe/c image datasets where we can control factors  

O(m log m)
z = (y, a)

Planned experiments for the current method 
 ̂p(z |x) = Softmax( − < 1,Ê(x, z) > − log M̂(z) + log p(z))



Future Work
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•A reasonable assump/on is that we observe the class label ( ) but not the spurious 
a@ributes (  where  

•Similar setup explored in recent works; XRM (Pezeshki et al.), ULA(Tsirigo/s et al.) 
•However, their setup did not consider the extreme case of composi/onal shiJ 

•Similar to disentanglement with weak supervision but our goal is to disentangle only 
the quan/za/on of spurious features! 

y
(a1, ⋯, adz−1) z = (y, a1, ⋯, adz−1)

Extrapola/on without labelled factors ?z



Future Work
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•Perhaps assump/ons similar to addi/ve decoders can help 
•  

•Empirical evidence for disentanglement with methods similar to addi/ve energy 
models in recent work by Liu et al. 

∇xlog ̂p(x | ̂z) = ∇xlog p(x |z) ⟹ − < 1,Ê(x, ̂z) > = − < 1,E(x, z) >

Disentanglement with Addi/ve Energy Models?



Thank You!
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Backup Slides
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Linear Identifiability of ERM



Linear Identifiability of ERM

Minimum risk ( )        
                                                            

                               
                                                           
 

R( f ) = 𝔼[ | |N | |2 ] ⟹ f = ΓZ
⟹ Γ̂ ̂Z = ΓZ



Linear Identifiability of ERM

Minimum risk ( )        
                                                            

Since  is full column rank (k>d), we can find a set S  of d rows  
such that  is inver/ble 

                                                  
                                                           
 

R( f ) = 𝔼[ | |N | |2 ] ⟹ f = ΓZ
⟹ Γ̂ ̂Z = ΓZ

Γ̂ ∈ Rk,d

Ŵ = [Γ̂]S,:



Linear Identifiability of ERM

Minimum risk ( )        
                                                            

                                                               
                                                                      

                                                          
                              

                                                           
 

R( f ) = 𝔼[ | |N | |2 ] ⟹ f = ΓZ
⟹ Γ̂ ̂Z = ΓZ
⟹ Ŵ ̂Z = WZ
⟹ ̂Z = (Ŵ)−1WZ
⟹ ̂Z = AZ



Linear Identifiability of IC-ERM

Minimum risk ( )                                                                  
                                                          

                              
                                                           
 

R( f ) = 𝔼[ | |N | |2 ] ⟹ f = ΓZ
⟹ ̂Z = AZ

   has mutually independent components; similar to the Linear ICA problem! 
Hence, A must be permuta?on & scaling matrix.

̂Z



Datasets

Scalar Latent Dataset:  Balls move only along y-axis

 dim(Z) = 2
ℬ = {{1}, {2}}

Block Latent Dataset:  Balls move along both x and y-axis

 dim(Z) = 4
ℬ = {{1,2}, {3,4}}

Independent Case:   

Dependent Case:   
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Disentanglement
Scalar Latent Block Latent 

Independent
Block Latent 
Dependent

Non-Addi/ve Decoder

Addi/ve Decoder

70.6 (5.2) 53.9 (7.6) 78.1 (2.9)

91.5 (3.6) 92.2 (4.9) 99.9 (0.0)

Original Images

Reconstruc/ons

Block-specific decoder #1

Block-specific decoder #2

Modified MCC score (Higher implies more disentangled)
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Proof Sketch

Precisely, for all   we haveB ∈ ℬ

 ̂f (B)(zB) = f (π(B)) (vπ(B)(zB)) + c(B)

Block decoders equality holds true for all blocks on samples from CPE 

Samples from the CPE s/ll have the support for marginal distribu/ons!  
 Supp(Ztr

B ) = Supp(Zte
B )

Addi/vity enables you to get final image via addi/on of block decoders! 

Global Disentanglement is necessary for composi/onality! 
We need the learned block decoders to correspond in unique manner to true block decoders! 

68



Proof Sketch

Deriva/ve w.r.t  for some  zj ∈ J J ∈ ℬ

  ̂f : Diffeomorpshim
̂g : con?nuous
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Proof Sketch

Deriva/ve w.r.t  for some  zj ∈ J J ∈ ℬ

Deriva/ve w.r.t  for some  zj′ 
∈ J′ J′ ∈ ℬ/{J}
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Proof Sketch

Deriva/ve w.r.t  for some  zj′ 
∈ J′ J′ ∈ ℬ/{J}

Simplifying the expression 
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Proof Sketch

  W(v(z))T = [w(v(z),1), ⋯, w(v(z), dx)]

Assump/on of sufficient non-linearity on  implies  has full-column rankf W(v(z))
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Proof Sketch

Assump/on of sufficient non-linearity on  implies  has full-column rankf W(v(z))

The final equality can be implied further to show  is -block permuta/on matrixDv(z) ℬ
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Independence Constrained ERM
Representa?on  

Network

ERM

Representa?on  
Network

IC-ERM

min
W∈ℝd×k,Φ∈ℋΦ

N

∑
i=1

ℓ(W ∘ Φ(xi), yi)

min
W∈ℝd×k,Φ

N

∑
i=1

ℓ(W ∘ Φ(xi), yi)
 is i.i.d.Φ(X)

Linear Layer

Linear Layer
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