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Representation Identification: Introduction |IC-ERM: Independence-constrained ERM Results: Regression Case
- Non-Linear ICA: Recover the latent variables Z given the observations X = ¢(Z), - Definition of IC-ERM objective: Labe! Prediction 100 Latent Prediction
where ¢ in general Is non-linear, invertible function. ' t ‘ '
. g | .8 | | et y i, R(© o ®) s.t. $(X) is mutually independent (3) 1.0 ¢ m— i —) e
- Identifiability: If the |r.1.ferr.ed atents Z = g~ (X) alnd the trule atents % — (f() - Theorem 1: If the assumptions on our data generation process hold and the O
are related by some bijection a € A, such that 2= = ao 27, then 2= ~4 27 number of tasks k is equal to the dimension of the latent d, then the solution x 0.8 (z) 50 . — " — —
- Unidentifiability of Non-Linear ICA: Without further structural assumptions or Of 0 ® to IC-ERM (3) with ¢ as loss function.
access to auxilliary information, non-linear ICA will not be identifiable upto simple Case of single task k=1: We consider a slightly modified data generation process. 0.6 25
transformations. [1] 5
. Contrlbutlons.. . L. . Z <= h(Nz) X g (U) Y <10+ Ny () Number of Tasks Number of Tasks
- Propose the independence-constrained ERM objective that guarantees solution , N
to non-linear [CA upto permutation and scaling in supervised learning setup. - Reparametrized IC-ERM objective: == ERM ERM-ICA == ERN=C= ERM ERM-ICA  =i= ERM-PCA
- Practical implementation of the proposed objective with a two phase approach - , . — .
. S igure: Comparison of label and latent prediction performance (regression, d = 16).
using ERM and Fast ICA. S R(1o®) st ®(X)isiid. (5) : - - - reg )
Comparison of Data Generation Process - Theorem 2: If the a;sumpﬁons on the modiﬁed data generation progess hold and Label Prediction 100 Latent Prediction
some extra assumptions hold, then the solution ®1(X) of reparametrized IC-ERM
S . 1.0
objective recovers the true latent U up to permutations. 75
G ° ERM-ICA: Practical Implementation of IC-ERM N 0.8 ( —— ——— é 50
- We propose a two step approximation method as ERM-ICA: 06 25 T e T
. ERM Phase: Learn O, &' by solving the ERM objective. ’
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. ICA Phase: [3] Learn Q7 by linear ICA on the representation from ERM Phase
(CDT), == = ERM ERM-ICA w=/=  ERN =)= ERM ERM-ICA == ERM-PCA
° ° Q' €oqisinvertible 1(§2 0 7(X)) 7 Figure: Comparison of label and latent prediction performance (regression, d = 16).
Labels cause the latent variables Latent variables cause the label : TheOrem 3: It the assumpﬁons on our data generaﬁon Process hO|d and the R lt _ Cl. ﬁ t C
(2) (b) number of tasks k is equal to the dimension of the latent d, then the solution esults. Llassification L.ase
Figure: (a) Data generation process in [2]; (b) Data generation process studied in our (2 o @7 to ERM-ICA with £ as loss function identifies true Z up to permutation and 100 Label Prediction 100 Latent Prediction
work scaling.
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. Ny € R%is noise, h : RY — R? generates Z € R? R SR
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. g : R — R%is a bijection that generates the observations X 100 100
. [ € R*4is a matrix that generates the label Y € R* and Ny € R¥ is the noise L — 80
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Figure: Comparison of label and latent prediction performance (regression, d = 16).
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