Representation Identification: Introduction

- Non-Linear ICA: Recover the latent variables Z given the observations X = g(Z), Definition of IC-ERM objective: $\min_{\Theta \in \mathcal{H}_{\Theta}, \Phi \in \mathcal{H}_{\Phi}} R(\Theta \circ \Phi) \text{ s.t. } \Phi(X) \text{ is mutually independent}$ where g in general is non-linear, invertible function.
- Identifiability: If the inferred latents $\tilde{Z} = \tilde{g}^{-1}(X)$ and the true latents $Z = g^{-1}(X)$ are related by some bijection $a \in \mathcal{A}$, such that $\tilde{Z}^{-1} = a \circ Z^{-1}$, then $\tilde{Z}^{-1} \sim_{\mathcal{A}} Z^{-1}$.
- Unidentifiability of Non-Linear ICA: Without further structural assumptions or access to auxilliary information, non-linear ICA will not be identifiable upto simple • Case of single task k=1: We consider a slightly modified data generation process. transformations. [1]
- Contributions:
- Propose the independence-constrained ERM objective that guarantees solution Reparametrized IC-ERM objective: to non-linear ICA upto permutation and scaling in supervised learning setup. Practical implementation of the proposed objective with a two phase approach
- using ERM and Fast ICA.

Comparison of Data Generation Process

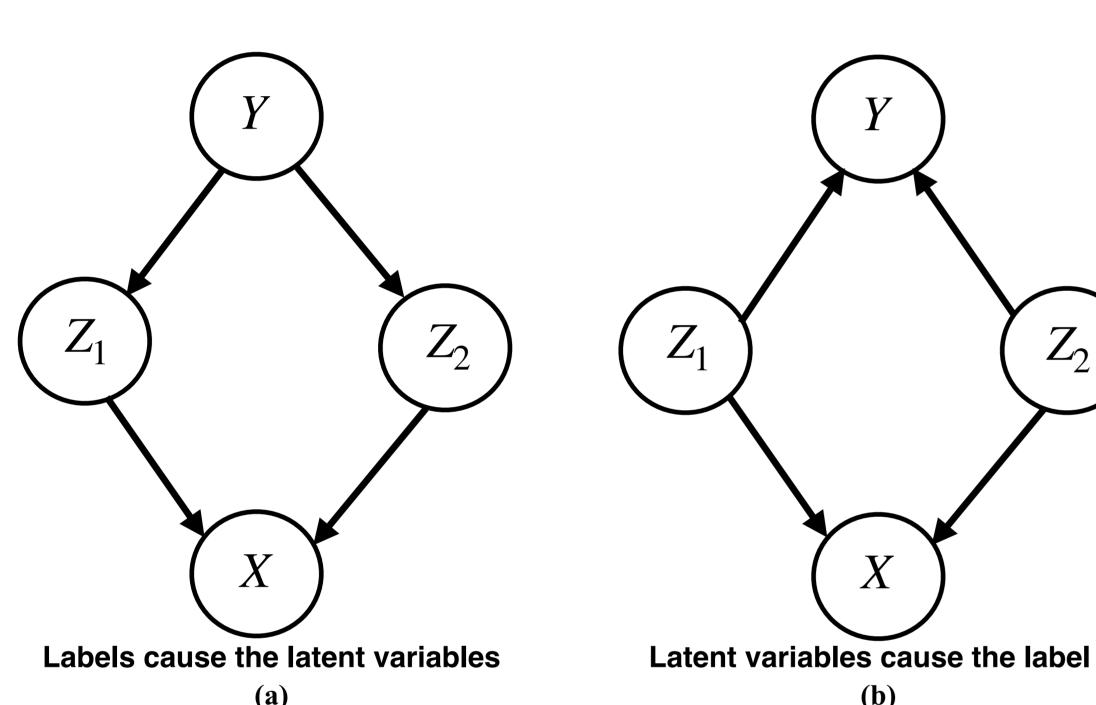


Figure: (a) Data generation process in [2]; (b) Data generation process studied in our work.

• Prior Works: Latent variables caused by labels, and rendered conditionally independent on labels.

$$Y \leftarrow \mathsf{Bernoulli}\Big(\frac{1}{2}\Big) \qquad Z \leftarrow \mathcal{N}(Y\mathbf{1},\mathsf{I}) \qquad X$$

• Our Work: Labels are caused by the mutually independent latent variables

$$Z \leftarrow h(N_Z)$$
 $X \leftarrow g(Z)$ $Y \leftarrow \Gamma Z$

Notations:

- $N_Z \in \mathbb{R}^d$ is noise, $h : \mathbb{R}^d \to \mathbb{R}^d$ generates $Z \in \mathbb{R}^d$
- $g: \mathbb{R}^d \to \mathbb{R}^d$ is a bijection that generates the observations X
- $\Gamma \in \mathbb{R}^{k \times d}$ is a matrix that generates the label $Y \in \mathbb{R}^k$ and $N_Y \in \mathbb{R}^k$ is the noise vector (N_Y is independent of Z and $\mathbb{E}[N_Y] = 0$)

Towards efficient representation identification in supervised learning

Kartik Ahuja¹ Divyat Mahajan¹ Vasilis Syrgkanis² Ioannis Mitliagkas¹ ¹Mila - Quebec AI Institute, University of Montreal ²Microsoft Research, New England

Paper: arxiv/2204.04606 Code: github/divyat09/ood-identification

IC-ERM: Independence-constrained ERM

- Z_2

- $\leftarrow g(Z)$
- $+N_Y$

• Theorem 1: If the assumptions on our data generation process hold and the number of tasks k is equal to the dimension of the latent d, then the solution $\Theta^{\dagger} \circ \Phi^{\dagger}$ to IC-ERM (3) with ℓ as loss function.

> $X \leftarrow q'(U)$ $Z \leftarrow h(N_Z)$

> > $\min_{\Phi \in \mathcal{H}} R(\mathbf{1} \circ \Phi) \text{ s.t. } \Phi(X) \text{ is i.i.d.}$

• Theorem 2: If the assumptions on the modified data generation process hold and some extra assumptions hold, then the solution $\Phi^{\dagger}(X)$ of reparametrized IC-ERM objective recovers the true latent U up to permutations.

ERM-ICA: Practical Implementation of IC-ERM

- We propose a two step approximation method as ERM-ICA:
- ERM Phase: Learn $\Theta^{\dagger}, \Phi^{\dagger}$ by solving the ERM objective. $\Theta^{\dagger}, \Phi^{\dagger} \in_{\Theta \in \mathcal{H}_{\Theta}, \Phi \in \mathcal{H}_{\Phi}} R(\Theta \circ \Phi)$
- ICA Phase: [3] Learn Ω^{\dagger} by linear ICA on the representation from ERM Phase (Φ^{\dagger})
 - $\Omega^{\dagger} \in_{\Omega,\Omega} \text{ is invertible } I(\Omega \circ \Phi^*(X))$
- Theorem 3: If the assumptions on our data generation process hold and the number of tasks k is equal to the dimension of the latent d, then the solution $\Omega^{\dagger} \circ \Phi^{\dagger}$ to ERM-ICA with ℓ as loss function identifies true Z up to permutation and scaling.

References

- [1] A. Hyvärinen and P. Pajunen, ``Nonlinear independent component analysis: Existence and uniqueness results," Neural networks, vol. 12, no. 3, pp. 429--439, 1999. (1)
- [2] I. Khemakhem, R. P. Monti, D. P. Kingma, and A. Hyvärinen, ``Ice-beem: Identifiable conditional energy-based deep models based on nonlinear ica," arXiv preprint arXiv:2002.11537, 2020.
- ⁽²⁾ [3] P. Comon, ``Independent component analysis, a new concept?," *Signal processing*, vol. 36, no. 3, pp. 287--314, 1994.

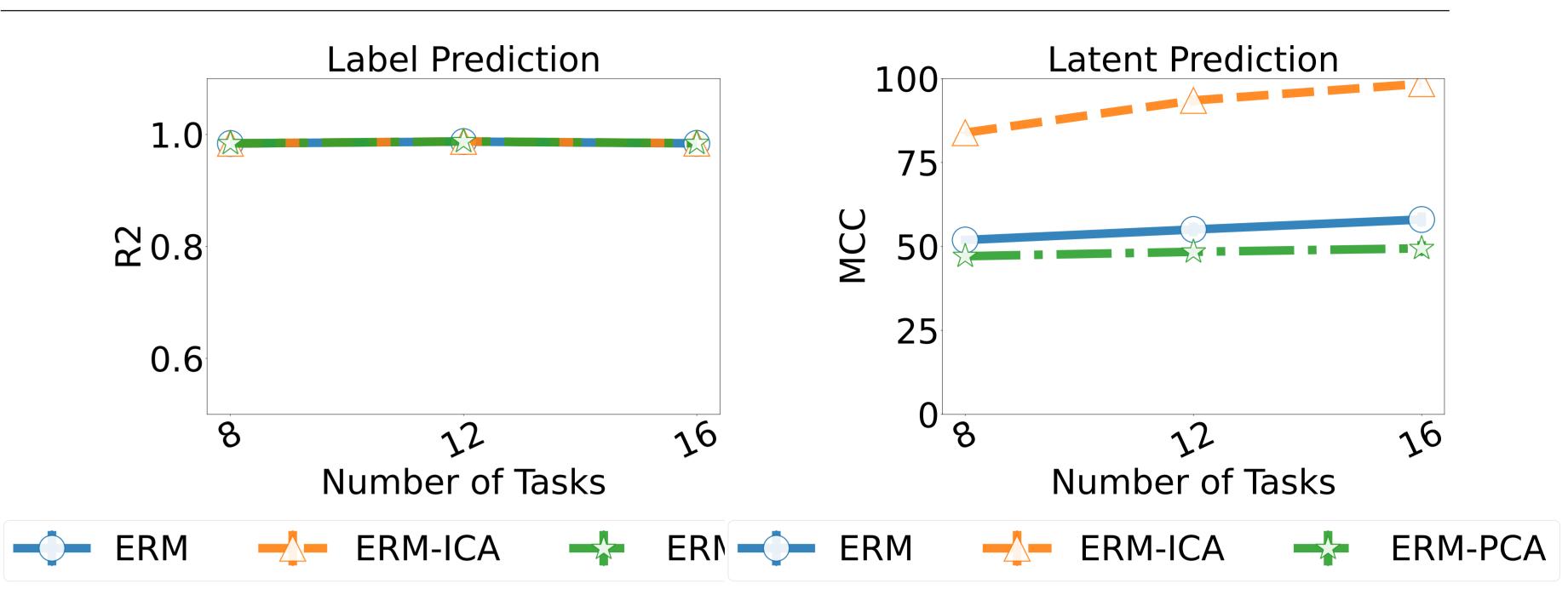
$$Y \leftarrow \mathbf{1}^{\mathsf{T}}U + N_Y \tag{4}$$

(3)

(5)

(7)

(6)



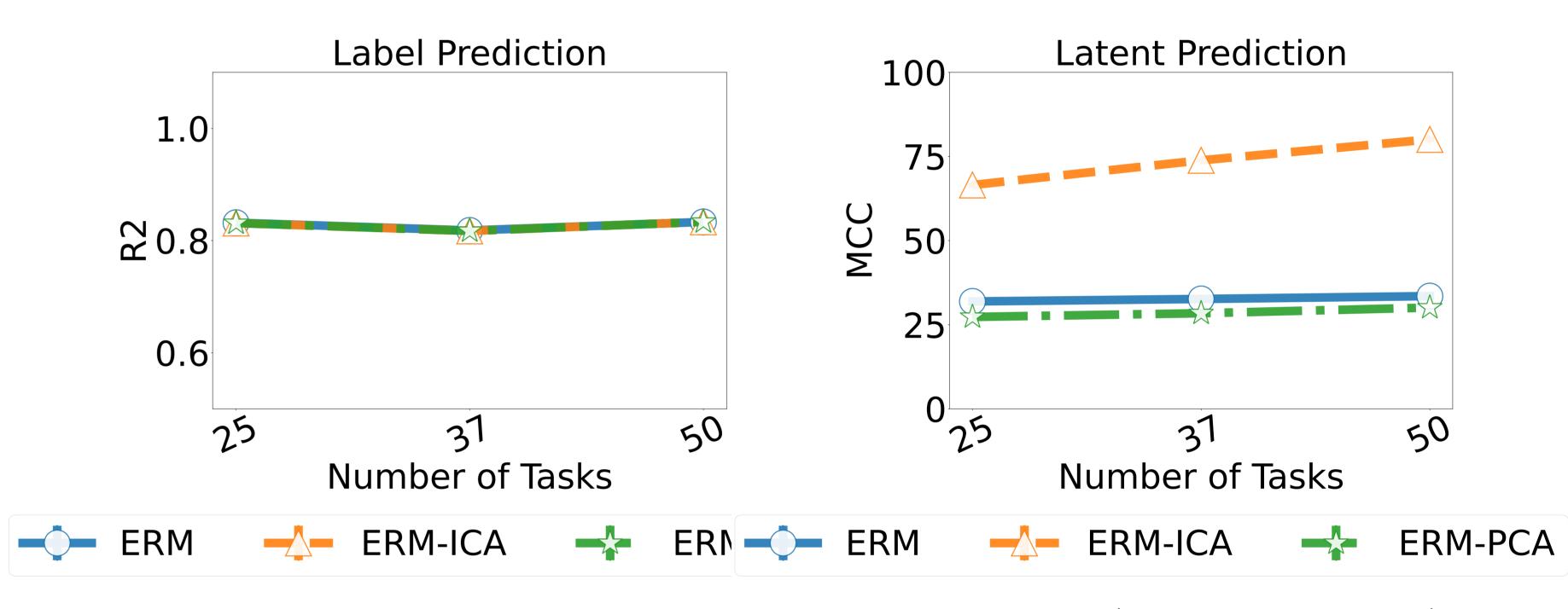
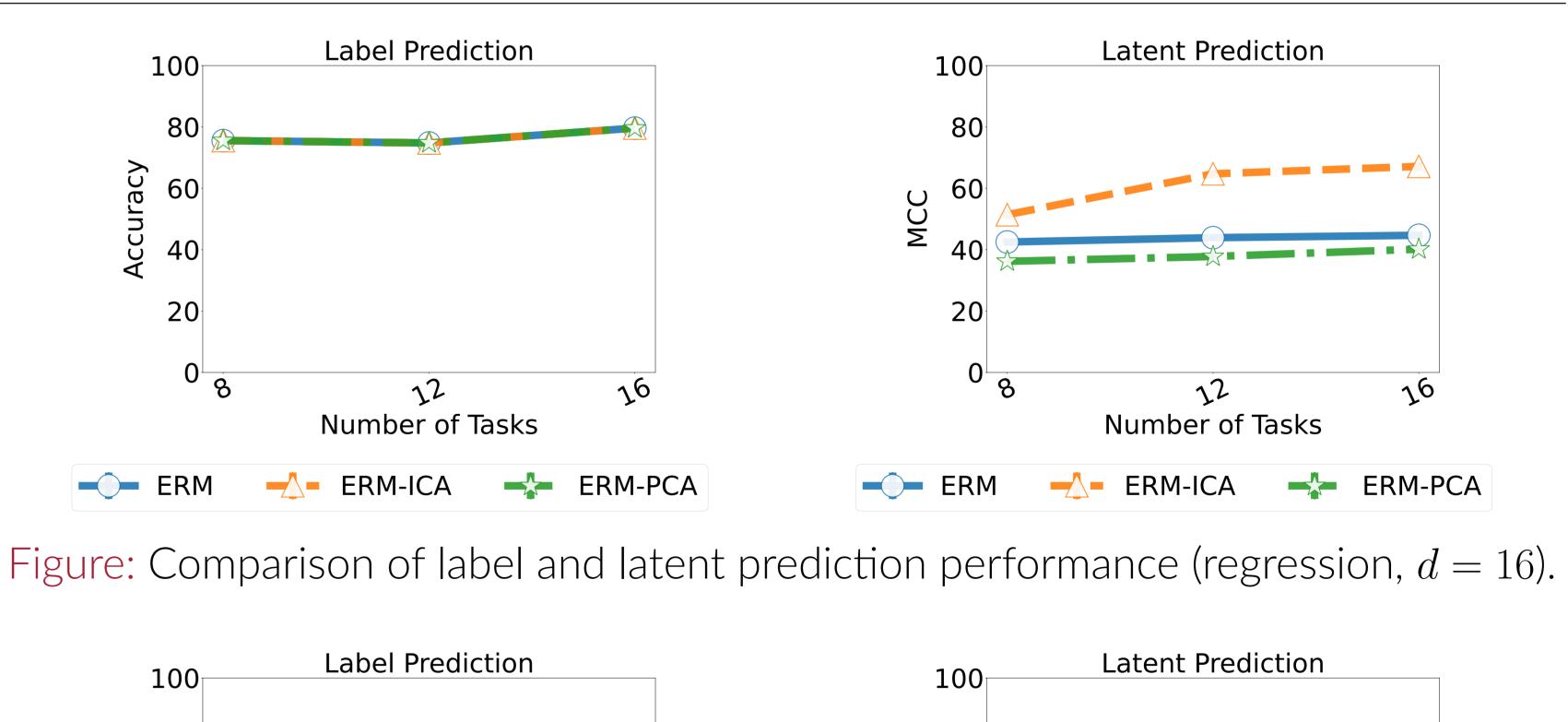


Figure: Comparison of label and latent prediction performance (regression, d = 16).



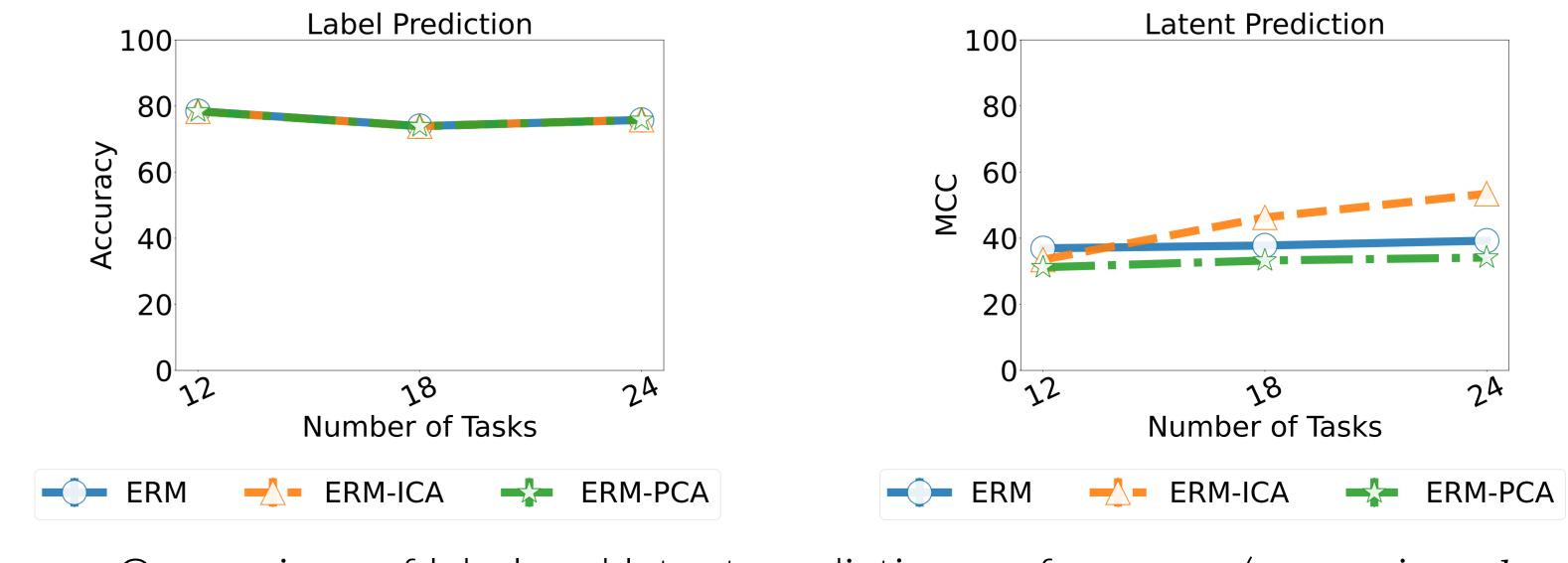


Figure: Comparison of label and latent prediction performance (regression, d = 16).

Results: Regression Case

Figure: Comparison of label and latent prediction performance (regression, d = 16).

Results: Classification Case