Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation

Divyat Mahajan, Ioannis Mitliagkas, Brady Neal, & Vasilis Syrgkanis

- training **415 CATE estimators** per dataset.

- **CATE:** $\tau(x) = \mathbb{E}[Y(1) Y(0)|X = x]$

- Indirect Meta-Learner:
- **T-Learner:** $\hat{\tau}_T(x) = \hat{\mu}_1(x) \hat{\mu}_0(x)$
- Direct Meta-Learner:

- Cannot perform cross-validation unlike machine learning!

Surrogate PEHE:
$$L(\hat{\tau}) = \mathbb{E}_X[(\hat{\tau}(X) - \tilde{\tau}(X))^2]$$

- of surrogate metrics!

- learners trained for each dataset.

Results: Single-Level Strategy

Metric	ACIC 2016	LaLonde CPS	LaLonde PSID	TWINS
Value Score	1.05e+7 (4.31e+6)	$\mid 6.63 \ (5.52)$	0.48 (0.06)	$\mid 0.57 \; (0.15)$
S Score	$\mid 0.95 \ (0.02)$	$\mid 0.90 \ (0.04)$	$\mid 0.74 \; (0.04)$	0.29 (0.05)
T Score	0.56 (0.02)	0.16 (0.03)	0.42 (0.03)	0.31 (0.05)
X Score	0.56 (0.02)	0.16 (0.03)	0.41 (0.03)	$\mid 0.35 \ (0.06)$
R Score	4.0 (0.11)	$\mid 0.83 \ (0.04)$	$\mid 0.67 \; (0.03)$	$\mid 0.60 \ (0.11)$
Influence Score	1455.75 (1439.46)	$\mid 0.95 \ (0.04)$	$\mid 0.80 \ (0.02)$	1.08 (0.1)
DR T Score	0.56 (0.02)	0.16 (0.02)	0.41 (0.03)	0.32 (0.07)
DR Switch T Score	0.56 (0.02)	0.16 (0.03)	0.41 (0.03)	0.28 (0.05)
TMLE T Score	0.64 (0.03)	0.16 (0.03)	0.42 (0.03)	0.31 (0.05)
Cal DR T Score	3.45 (0.11)	0.17 (0.03)	0.42 (0.03)	0.21 (0.03)
Qini DR T Score	1.32 (0.07)	2.87 (1.53)	$\mid 0.57 \ (0.05)$	2.08e+7 (1.90e+7)

Table 1: Normalized PEHE of the **best estimators** chosen by each metric with the **single-level** model selection strategy; results report the mean (standard error) across 20 seeds and also across datasets for the ACIC 2016 benchmark. Lower value is better.

Results: Two-Level Strategy

Metric	ACIC 2016	LaLonde CPS	LaLonde PSID	TWINS
Value Score	$3.97\ (1.98)$	0.34 (0.09)	0.43 (0.03)	0.21 (0.03)
S Score	$0.93\ (0.02)$	0.90(0.04)	$\mid 0.75 \; (0.04)$	0.21 (0.03)
T Score	$0.56\ (0.02)$	0.16 (0.03)	\mid 0.41 (0.03)	0.21 (0.03)
X Score	$0.56\ (0.02)$	0.16 (0.03)	\mid 0.41 (0.03)	0.21 (0.03)
R Score	3.88(0.11)	$0.86\ (0.03)$	$\mid 0.62 \; (0.03)$	0.21 (0.03)
Influence Score	3.26(0.1)	0.93 (0.04)	$\mid 0.77 \; (0.03)$	0.16 (0.02)
DR T Score	$0.56\ (0.02)$	0.16 (0.02)	\mid 0.41 (0.03)	0.21 (0.03)
DR Switch T Score	$0.56\ (0.02)$	0.16 (0.03)	0.41 (0.03)	0.21 (0.03)
TMLE T Score	$0.61 \ (0.03)$	0.16 (0.03)	0.42 (0.03)	0.21 (0.03)
Cal DR T Score	$0.62\;(0.02)$	0.19 (0.04)	0.42 (0.03)	0.22 (0.03)
Qini DR T Score	$0.58\ (0.02)$	0.14 (0.03)	0.52(0.03)	0.24 (0.04)

Table 2: Normalized PEHE of the **best estimators** chosen by each metric with the **two-level model** selection strategy; results report the mean (standard error) across 20 seeds and also across datasets for the ACIC 2016 benchmark. Lower value is better.

28.7 % cases, otherwise statistically indistinguishable.

Emperiment Setup

• **Datasets:** 75 synthetic (ACIC 2016 benchmark) and 3 realistic datasets • CATE Estimators: Large collection of both direct and indirect meta-

• Surrogate Metrics. Comprehensive collection of prior metrics as well as novel metrics like adaptive propensity adjustment, TMLE, etc.

• Plug-in surrogate metrics (T/X Score) are optimal (Thanks to AutoML!)

Strict improvement over single-level selection strategy! Better performance in