Compositional Risk Minimization

Vincent^{1,2*,†}

¹Meta FAIR, ²Mila, Université de Montréal, DIRO *Work done at Meta, [†]Joint last author

Divyat Mahajan 1,2* , Mohammad Pezeshki 1 , Charles Arnal 1 , Ioannis Mitliagkas 2 , Kartik Ahuja 1,† , Pascal

Compositional Shifts

 Some combinations of attributes are totally absent from the training distribution but present in the test distribution

: only in test

Compositional Shifts

Compositional Distribution Shifts

- Assumption 1: $p(x|z) = q(x|z) \forall z \in \mathscr{Z}^{\times}$
- Assumption 2: $\mathscr{Z}^{\text{test}} \not\subseteq \mathscr{Z}^{\text{train}}$ but $\mathscr{Z}^{\text{test}} \subseteq \mathscr{Z}^{\times}$
- Attribute Vector: z = (z₁,..., z_m) that characterizes the group for the input x
 Each attribute z_i is categorical and can take d possible values.
- Train Distribution: p(x, z) = p(z)p(x | z) with support of z as $\mathscr{Z}^{\text{train}}$
- Test Distribution: q(x, z) = q(z)q(x | z) with support of z as $\mathscr{Z}^{\text{test}}$
- Cartesian Product: $\mathscr{Z}^{\times} = \mathscr{Z}_{1}^{\text{train}} \times \mathscr{Z}_{2}^{\text{train}} \times \cdots \mathscr{Z}_{m}^{\text{train}}$

Subpopulation Shifts

Subpopulation Shift: p(x | z) = q(x | z) but $p(z) \neq q(z)$

balanced distribution over groups during **evaluation**

Compositional Shifts are an extreme version of Subpopulation shifts!

Common Setup: **Imbalanced** distribution over group during **training** while

Contributions

Build classifiers that are robust to compositional distributions shifts!

Theory of Compositional Shifts. For the family of additive energy distributions, we prove that additive energy classifiers generalize compositionally to novel combinations of attributes represented by a special mathematical object, which we call *discrete affine hull*.

A Practical Method. We propose simple algorithm Compositional Risk Minimization (CRM), which first trains an additive energy classifier and then adjusts the trained classifier for tackling compositional shifts.

Generative Classification

$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)} \propto p(x \mid z)p(z)$$

novel group at test time

Challenge: We never observe samples from group (y_2, a_2) during training

If we can reliably estimate $p(x | y_2, a_2)$ then we can make predictions for the

Cartesian Product Extrapolation (CPE)

Does this imply $p(x | y_2, a_2) = \hat{p}(x | y_2, a_2)$?

- Assume we have done density estimation perfectly for train groups,
 - $p(x | y_1, a_1) = \hat{p}(x | y_1, a_1)$ $p(x | y_2, a_1) = \hat{p}(x | y_2, a_1)$ $p(x | y_1, a_2) = \hat{p}(x | y_1, a_2)$

Additive Decoders

Assume p(x | y, a) as parameterized by an additive function p(x | y, a) = N(x; f(y, a), I) where $f(y, a) = f_y(y) + f_a(a)$

Then it can be proved that CPE is possible!

Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation

Sébastien Lachapelle*, Divyat Mahajan*, Ioannis Mitliagkas & Simon Lacoste-Julien Neural Information Processing Systems (*NeurIPS*) 2023 (*Oral*)

*Equal contribution

Additive Decoders

Extrapolation

- Balls move only along y-axis
- Remove images where both balls have high y-coordinate to get L-shaped training support

Extrapolation

Learned Latent Space

Additive Decoder

Non-**Additive** Decoder

Generated Images

These samples were never seen during training

Cannot generate unseen samples

Limitation: Additive Decoder

 $X = f(Z_1) + f(Z_2)$

$X = \mu_1(Z) \times f(Z_1) + \mu_2(Z) \times f(Z_2) \checkmark$

Does not work for images with occlusions!

- Assumption: The energy function can be decomposed as addition of energies with different components of *z*
- Natural choice to model inputs that satisfy a conjunction of characteristics • More expressive than additive decoders; can model interaction between components of z via

the partition function $\mathbb{Z}(z) = \exp(-1^T E(x, z)) dx$

$$p(x \mid z) = \frac{1}{\mathbb{Z}(z)} \exp\left(-\sigma(z)^T H\right)$$

where $\sigma(z) = [\text{onehot}(z_1), \dots, E(x)] = [E_1(x, 1), \dots, E(x)]$

CPE with Additive Energy Distributions

Does this imply $\sigma(y_2, a_2)^T E$

- Assume we have perfectly estimated energy functions for train groups
 - $\sigma(y_1, a_1)^T E(x) = \sigma(y_1, a_1)^T \hat{E}(x)$ $\sigma(y_1, a_2)^T E(x) = \sigma(y_1, a_2)^T \hat{E}(x)$ $\sigma(y_2, a_1)^T E(x) = \sigma(y_2, a_1)^T \hat{E}(x)$

$$E(x) = \sigma(y_2, a_2)^T \hat{E}(x)$$
?

CPE via affine combination of train groups

$$\sigma(y_2, a_2)^T \hat{E}(x) = \sigma(y_2, a_1)^T \hat{E}(x) - \sigma(y_1, a_1)^T \hat{E}(x) + \sigma(y_1, a_2)^T \hat{E}(x)$$

$$\implies \sigma(y_2, a_1)^T E(x) - \\ \implies \sigma(y_2, a_2)^T E(x)$$

If the novel group can be expressed as an affine combination of train groups, then we can extrapolate the learned energies to the novel groups!

 $-\sigma(y_1, a_1)^T E(x) + \sigma(y_1, a_2)^T E(x)$

Discrete Affine Hull Extension

- $\mathsf{DAff}(\mathscr{A}) = \Big\{ z \in \mathscr{Z} \mid \exists \alpha \in \mathbb{R}^k,$
 - where $\mathcal{A} = \{z^{(1)}, ..., z^{(l)}\}$

$$\sigma(z) = \sum_{i=1}^{k} \alpha_i \sigma(z^{(i)}), \sum_{i=1}^{k} \alpha_i = 1 \}$$

$$(k) \}, z^{(i)} \in \mathcal{Z}$$

$$\sigma(y_2, a_2) = \sigma(y_2, a_1) - \sigma(y_1, a_1) + \sigma(y_1)$$

$$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} = (+1) \cdot \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} + (-1) \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + (+1) \cdot$$

i=1i=1

 $\sigma(\mathbf{n}, \mathbf{k}) = \sigma(\mathbf{n}, \mathbf{k}) - \sigma(\mathbf{n}, \mathbf{k}) + \sigma(\mathbf{n}, \mathbf{k})$

Discrete Affine Hull Extension

where $\mathcal{A} = \{z^{(1)}, ..., z^{(k)}\}, z^{(i)} \in \mathcal{Z}$

 $\mathsf{DAff}(\mathscr{A}) = \left\{ z \in \mathscr{Z} \mid \exists \ \alpha \in \mathbb{R}^k, \sigma(z) = \sum_{i=1}^{\kappa} \alpha_i \sigma(z^{(i)}), \sum_{i=1}^{\kappa} \alpha_i = 1 \right\}$ i=1i=1

CPE is not always same as Discrete Affine Hull

Note that extrapolation to novel groups is dependent on the training groups

 a_1

Extrapolation to Discrete Affine Hull

True Distribution: p

Learned Distribution: Ĺ

$$p(x \mid z) = \frac{1}{\mathbb{Z}(z)} \exp\left(-\sigma(z)^T E(x)\right)$$

$$\hat{p}(x \mid z) = \frac{1}{\hat{\mathbb{Z}}(z)} \exp\left(-\sigma(z)^T \hat{E}(x)\right)$$

Theorem: If $p(.|z) = \hat{p}(.|z) \ \forall z \in \mathscr{Z}^{\text{train}}$ then $p(.|z) = \hat{p}(.|z) \ \forall z \in DAff(\mathscr{Z}^{\text{train}})$

Generative Classification with AED

True Model:

 $p(z \mid x) = Softmax(\log p(x \mid z) + \log p(z))$

Learned Model: $\hat{p}(z | x) = Softmax(\log \hat{p}(x | z) + \log p(z))$

Corollary: If $p(z|x) = \hat{p}(z|x) \ \forall z \in \mathscr{Z}^{\text{train}}$ then $p(z|x) = \hat{p}(z|x) \ \forall z \in DAff(\mathscr{Z}^{\text{train}})$

where
$$p(x|z) = \frac{1}{\mathbb{Z}(z)} \exp\left(-\sigma(z)^T E(x)\right)$$

where
$$\hat{p}(x|z) = \frac{1}{\hat{\mathbb{Z}}(z)} \exp\left(-\sigma(z)^T \hat{E}(x)\right)$$

Generative Classification with AED

True Model:

 $p(z \mid x) = Softmax(\log p(x \mid z) + \log p(z))$

Learned Model: $\hat{p}(z | x) = Softmax(\log \hat{p}(x | z) + \log p(z))$

Inferring partition function $\mathbb{Z}(z) =$

where
$$p(x | z) = \frac{1}{\mathbb{Z}(z)} \exp\left(-\sigma(z)^T E(x)\right)$$

where
$$\hat{p}(x|z) = \frac{1}{\hat{\mathbb{Z}}(z)} \exp\left(-\sigma(z)^T \hat{E}(x)\right)$$

$$\exp(-\sigma(z)^T E(x)) dx \text{ is challenging!}$$

Compositional Risk Minimization (CRM)

Additive Energy Classifier: $\tilde{p}(z \mid x) = - \sum_{z' \in \mathcal{Z}^t} \tilde{p}(z \mid x)$

• CRM First Step: $\hat{E}, \hat{B} \in argmin_{\tilde{E},\tilde{B}}R(\tilde{p})$ where $R(\tilde{p}) = \mathbb{E}_{(x,z)\sim \tilde{P}}$

$$\exp\left(-\sigma(z)^{T}\tilde{E}(x) + \log\hat{p}(z) - \tilde{B}(z)\right)$$

$$\underset{\mathscr{Z}^{\text{train}}}{\exp\left(-\sigma(z')^{T}\tilde{E}(x) + \log\hat{p}(z') - \tilde{B}(z')\right)}$$

$$p\left[-\log \tilde{p}(z \,|\, x)\right]$$

Compositional Risk Minimization (CRM)

Additive Energy Classifier:
$$\tilde{p}(z \mid x) = \frac{\exp\left(-\sigma(z)^T \tilde{E}(x) + \log \hat{p}(z) - \tilde{B}(z)\right)}{\sum_{z' \in \mathscr{Z}^{\text{train}}} \exp\left(-\sigma(z')^T \tilde{E}(x) + \log \hat{p}(z') - \tilde{B}(z')\right)}$$

 CRM Second Step: Construct $\hat{q}(z | x)$ by replacing the prior $\hat{p}(z)$ with $\hat{q}(z)$ and learned bias $\hat{B}(z)$ with extrapolated bias $B^{\star}(z)$ $(x)^T \hat{E}(x) \Big)$ $(x) + \log p(\tilde{z}) - \hat{B}(\tilde{z})$

$$B^{\star}(z) = \log \left(\mathbb{E}_{x \sim p(x)} \left[\frac{\exp\left(-\sigma(z) - \sigma(z) \right)}{\sum_{\tilde{z} \in \mathscr{Z}^{\text{train}}} \exp\left(-\sigma(\tilde{z})^T \hat{E}(x) \right)} \right]$$

Compositional Risk Minimization (CRM)

Provable Extrapolation with CRM

True Model:

 $p(z | x) = Softmax(\log p(x | z) + \log p(z))$ where

Learned Model (Train): $\hat{p}(z \mid x) = Softmax(\log \hat{p}(x \mid z) + \log p(z)) \text{ where } \hat{p}(x \mid z) = \frac{1}{|\hat{B}(z)|} \exp\left(-\sigma(z)^T \hat{E}(x)\right)$ Learned Model (Eval): $\hat{q}(z | x) = Softmax(\log \hat{q}(x | z) + \log \hat{q}(z))$ where $\hat{q}(x | z) = \frac{1}{B^{\star}(z)} \exp\left(-\sigma(z)^T \hat{E}(x)\right)$

Theorem: If $\hat{p}(z|x) = p(z|x), \forall z \in \mathscr{Z}^{\text{train}}, \forall x \in \mathbb{R}^n$, and $\hat{q}(z) = q(z), \forall z \in \mathscr{Z}^{\text{test}}$ then $\hat{q}(z | x) = q(z | x), \forall z \in \mathscr{Z}^{\text{test}}, \forall x \in \mathbb{R}^n$

$$p(x | z) = \frac{1}{\mathbb{Z}(z)} \exp\left(-\sigma(z)^T E(x)\right)$$

Experiments: Setup

Water Background

Land Background

Land Bird Water Bird

Train Distribution

- Compositional Shift: $\mathscr{Z}^{\text{train}} \neq \mathscr{Z}^{\text{test}}$ but $\mathscr{Z}^{\text{test}} = DAff(\mathscr{Z}^{\text{train}})$

Land Bird Water Bird

Test Distribution

• Factors z = (y, a) where y denotes the class label and a denotes the spurious attribute

Experiments: Results

Dataset	Method	Average Acc WGA		WGA (No Groups Dropped)	
	ERM	77.9 (0.1)	43.0 (0.1)	62.3 (1.2)	
Waterbirds	G-DRO	77.9 (0.6)	42.3(2.5)	87.3 (0.3	
	LC	88.3 (0.7)	75.5 (0.8)	88.7 (0.3)	
	sLA	89.3(0.4)	77.3(0.5)	89.7 (0.3)	
	CRM	87.1 (0.7)	78.7(1.6)	86.0 (0.6)	
	ERM	85.8~(0.3)	39.0(0.6)	52.0 (1.0)	
	G-DRO	89.2 (0.5)	67.7(1.3)	91.0 (0.6)	
CelebA	LC	91.1 (0.2)	57.4(0.6)	90.0 (0.6)	
	sLA	90.9 (0.1)	57.4(0.3)	86.7(1.9)	
	CRM	91.1 (0.2)	81.8(1.2)	89.0 (0.6)	
MetaShift	ERM	85.7(0.4)	60.5(0.6)	63.0 (0.0)	
	G-DRO	86.0 (0.4)	63.8(0.6)	80.7 (1.3)	
	LC	88.5 (0.0)	68.2(0.5)	80.0 (1.2)	
	sLA	88.4 (0.1)	63.0(0.5)	80.0 (1.2)	
	CRM	87.6 (0.2)	73.4 (0.7)	74.7 (1.5)	
MultiNLI	ERM	69.1 (0.7)	7.2(0.6)	68.0 (1.7)	
	G-DRO	70.4(0.1)	34.3(0.5)	57.0 (2.3)	
	LC	75.9(0.1)	54.3(0.5)	74.3(1.2)	
	sLA	76.4(0.5)	55.0(1.8)	71.7(0.3)	
	CRM	74.6(0.5)	57.7(3.0)	74.7 (1.3)	
CivilComments	ERM	80.4 (0.1)	55.8(0.4)	61.0 (2.5)	
	G-DRO	80.1 (0.2)	61.6 (0.4)	64.7(1.5)	
	LC	80.7~(0.1)	65.7 (0.5)	67.3(0.3)	
	sLA	80.6~(0.1)	65.6(0.1)	66.3(0.9)	
	CRM	83.7~(0.1)	68.1 (0.5)	70.0 (0.6)	
NICO++	ERM	85.0 (0.0)	35.3(2.3)	35.3 (2.3)	
	G-DRO	84.0(0.0)	36.7(0.7)	33.7(1.2)	
	LC	85.0(0.0)	35.3(2.3)	35.3(2.3)	
	sLA	85.0(0.0)	33.0(0.0)	35.3(2.3)	
	CRM	84.7 (0.3)	40.3(4.3)	39.0 (3.2)	

- We report test Average Accuracy and Worst Group Accuracy (WGA), averaged as a group is dropped from training and validation sets
- Last column is WGA under the dataset's standard subpopulation shift benchmark, i.e. with no group dropped
- All methods have a harder time to generalize when groups are absent from training, but CRM appears consistently more robust

Experiments: Ablation

Method	Waterbirds	CelebA	MetaShift	MulitNLI	CivilComments	NICO++
$\begin{array}{c} { m CRM} \ (\hat{B}) \\ { m CRM} \end{array}$	55.7 (1.0) 78.7 (1.6)	58.9(0.4) 81.8(1.2)	58.7 (0.6) 73.4 0.7)	$\begin{array}{c} 29.2 \ (2.1) \\ 57.7 \ (3.0) \end{array}$	51.9(1.0) 68.1(0.5)	31.0(1.0) 40.3(4.3)

- We report Worst Group Accuracy, averaged as a group is dropped from training and validation sets
- mandated by our theory
- on shifting group prior probabilities does not suffice

• CRM (\hat{B}) is an ablated version of CRM where we use the trained bias \hat{B} instead of the extrapolated bias B^*

• The extrapolation step appears crucial for robust compositional generalization. Merely adjusting logits based

Thank You!

Challenges with Disconnected Support

- Disconnected support makes it hard to extrapolate to $CPE(\mathcal{Z}^{train})$
- This is a fundamental challenge when the factors z are discrete!

How fast does Discrete Affine Hull grow?

- As we add more factors to \mathscr{Z}^{train} , then $DAff(\mathscr{Z}^{train})$ would increase as well • Can we show after enough samples $DAff(\mathscr{Z}^{train})$ spans the full cartesian product
- 7× ?

Theorem: Assume m = 2, i.e, $z = (z_1, z_2)$ where each z_i has d possible values. If $|\mathscr{Z}^{\text{train}}| > 8cd \log(d/2)$, then $DAff(\mathscr{Z}^{\text{train}}) = \mathscr{Z}^{\times}$ with probability $\geq 1 - -$

How fast does Discrete Affine Hull grow?

- As we add more factors to \mathscr{Z}^{train} , then $DAff(\mathscr{Z}^{train})$ would increase as well
- FX ?

$$(m = 5, d = 5) \mid (m = 1.0 \mid)$$

Table 12 Numerical experiments to check the probability that the affine hull of random $\mathcal{O}(poly(m * d))$ one-hot concatenations span the entire set \mathcal{Z} . We sample random 3 * m * d one-hot vectors and report the frequency of times out of 1000 runs a random one-hot concatenation is in the affine hull of the selected set of vectors.

• Can we show after enough samples $DAff(\mathcal{Z}^{train})$ spans the full cartesian product

10, d = 10)	(m = 20, d = 20)
1.0	0.986