


Compositional Shifts
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• Some combinations of attributes are totally absent from the training distribution 
but present in the test distribution

: in train set   : only in test

a

y



Compositional Shifts
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: in train set   : only in test

a

y

• Attribute Vector:    that characterizes  the group for the input 
• Each attribute   is categorical and can take  possible values. 

• Train Distribution:   with support of  as 
• Test Distribution:   with support of  as 

• Cartesian Product:   

z = (z1, …, zm) x
zi d

p(x, z) = p(z)p(x |z) z 𝒵𝗍𝗋𝖺𝗂𝗇

q(x, z) = q(z)q(x |z) z 𝒵𝗍𝖾𝗌𝗍

𝒵× = 𝒵𝗍𝗋𝖺𝗂𝗇
1 × 𝒵𝗍𝗋𝖺𝗂𝗇

2 × ⋯𝒵𝗍𝗋𝖺𝗂𝗇
m

Compositional Distribution Shifts
• Assumption 1:   
• Assumption 2:    but   

p(x |z) = q(x |z) ∀z ∈ 𝒵×

𝒵𝗍𝖾𝗌𝗍 ⊈ 𝒵𝗍𝗋𝖺𝗂𝗇 𝒵𝗍𝖾𝗌𝗍 ⊆ 𝒵×



Subpopulation Shifts

Subpopulation Shift:      but  

Common Setup:  Imbalanced distribution over group during training while 
balanced distribution over groups during evaluation 

Compositional Shifts are an extreme version of Subpopulation shifts!

p(x |z) = q(x |z) p(z) ≠ q(z)



Contributions

Theory of Compositional Shifts.  For the family of additive energy 
distributions, we prove that additive energy classifiers generalize compositionally 
to novel combinations of attributes represented by a special mathematical 
object, which we call discrete affine hull.

A Practical Method.  We propose simple algorithm Compositional Risk 
Minimization (CRM), which first trains an additive energy classifier and then 
adjusts the trained classifier for tackling compositional shifts.

Build classifiers that are robust to compositional distributions shifts!



Generative Classification

                      

If we can reliably estimate  then we can make predictions for the 
novel group at test time

Challenge:  We never observe samples from group  during training

p(z |x) =
p(x |z)p(z)

p(x)
∝ p(x |z)p(z)

p(x |y2, a2)

(y2, a2) 
 
 

 

a1 a2

y1

y2

     Train 
     Eval 



Cartesian Product Extrapolation (CPE)

Assume we have done density estimation perfectly for train groups,
                           
                              
                          

Does this imply   ?

p(x |y1, a1) = ̂p(x |y1, a1)
p(x |y2, a1) = ̂p(x |y2, a1)
p(x |y1, a2) = ̂p(x |y1, a2)

p(x |y2, a2) = ̂p(x |y2, a2)
 
 
 

 

a1 a2

y1

y2

     Train 
     Eval 



Additive Decoders

Assume  as parameterized by an additive function    
 where  

Then it can be proved that CPE is possible!

p(x |y, a)
p(x |y, a) = N(x; f(y, a), I) f(y, a) = fy(y) + fa(a)



Additive Decoders for Latent Variables Identification 
and Cartesian-Product Extrapolation
Sébastien Lachapelle*, Divyat Mahajan*, Ioannis Mitliagkas & Simon Lacoste-Julien

Neural Information Processing Systems (NeurIPS) 2023 (Oral)
*Equal contribution



Additive Decoders

Observation
e.g. an image

Latent 
Factors

Partition of  
e.g. 

{1,…, dz}
ℬ = {{1,2}, {3,4}} Sub-blocks of z

Example:  Images of moving balls

= +

ℬ = {{1,2}, {3,4}}

zB1
= (z1, z2)

zB2
= (z3, z4)

Coordinates of 

Coordinates of 

f (B) Block-specific Decoder

x = f(z) f (B1)(z1) f (B2)(z2)



Extrapolation

Scalar Latent Dataset: 
•Balls move only along y-axis

•Remove images where both balls 
   have high y-coordinate to get 
   L-shaped training support

ℤ̂train



Extrapolation

Additive
Decoder

Non-
Additive
Decoder

Learned Latent 
Space Generated Images

Disentangled

Entangled

These samples were never
seen during training

Cannot generate
unseen samples



Limitation: Additive Decoder

Does not work for images with occlusions!

X = f(Z1) + f(Z2)

X = μ1(Z) × f(Z1) + μ2(Z) × f(Z2)



Additive Energy Distribution (AED)

      where    p(x |z) =
1

ℤ(z)
exp( − 1TE(x, z)) 1TE(x, z) =

m

∑
i=1

Ei(x, zi)

14

Conditional distribution 
of data given factors Partition Function Energy Function Energy Function 

 for each component 

• Assumption: The energy function can be decomposed as addition of energies with different 
components of  

• Natural choice to model inputs that satisfy a conjunction of characteristics
• More expressive than additive decoders; can model interaction between components of  via 

the partition function 

z

z
ℤ(z) = ∫ exp( − 1T E(x, z))dx



Additive Energy Distribution (AED)
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• AED expressed with inner product:  

              

             where      , 
                            

p(x |z) =
1

ℤ(z)
exp( − σ(z)TE(x))

σ(z) = [onehot(z1), …, onehot(zm)]⊤

E(x) = [E1(x,1), …, E1(x, d), …, Em(x,1), …, Em(x, d)]⊤

      where    p(x |z) =
1

ℤ(z)
exp( − 1TE(x, z)) 1TE(x, z) =

m

∑
i=1

Ei(x, zi)

Conditional distribution 
of data given factors Partition Function Energy Function Energy Function 

 for each component 



CPE with Additive Energy Distributions
Assume we have perfectly estimated energy functions for train groups

                          
 

                            
                          

Does this imply  ?

σ(y1, a1)TE(x) = σ(y1, a1)T ̂E(x)
σ(y1, a2)TE(x) = σ(y1, a2)T ̂E(x)
σ(y2, a1)TE(x) = σ(y2, a1)T ̂E(x)

σ(y2, a2)TE(x) = σ(y2, a2)T ̂E(x)
 
 
 

 

a1 a2

y1

y2

     Train 
     Eval 



CPE via affine combination of train groups

                                           
             
                         
If the novel group can be expressed as an affine combination of train 
groups, then we can extrapolate the learned energies to the novel groups!

σ(y2, a2)T ̂E(x) = σ(y2, a1)T ̂E(x) − σ(y1, a1)T ̂E(x) + σ(y1, a2)T ̂E(x)

⟹ σ(y2, a1)TE(x) − σ(y1, a1)TE(x) + σ(y1, a2)TE(x)
⟹ σ(y2, a2)TE(x)

 
 
 

 

a1 a2

y1

y2

     Train 
     Eval 



Discrete Affine Hull Extension

18

•
 

                   where 
          

𝖣𝖠𝖿𝖿(𝒜) = {z ∈ 𝒵 | ∃ α ∈ ℝk, σ(z) =
k

∑
i=1

αiσ(z(i)),
k

∑
i=1

αi = 1}
𝒜 = {z(1), …, z(k)} , z(i) ∈ 𝒵

 
 
 

 

a1 a2

y1

y2

     Train 
     Eval 

σ(y2, a2) = σ(y2, a1) − σ(y1, a1) + σ(y1, a2)

0
1
0
1

= (+1) ⋅

0
1
1
0

+ (−1) ⋅

1
0
1
0

+ (+1) ⋅

1
0
0
1



Discrete Affine Hull Extension
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•
 

                   where 
          

𝖣𝖠𝖿𝖿(𝒜) = {z ∈ 𝒵 | ∃ α ∈ ℝk, σ(z) =
k

∑
i=1

αiσ(z(i)),
k

∑
i=1

αi = 1}
𝒜 = {z(1), …, z(k)} , z(i) ∈ 𝒵

: in train set   : only in test

a

y , ) σ( , )= σ( ,− σ( ,+σ( ))



Discrete Affine Hull Extension
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•
 

                   where 
          

𝖣𝖠𝖿𝖿(𝒜) = {z ∈ 𝒵 | ∃ α ∈ ℝk, σ(z) =
k

∑
i=1

αiσ(z(i)),
k

∑
i=1

αi = 1}
𝒜 = {z(1), …, z(k)} , z(i) ∈ 𝒵

 
 
 



CPE is not always same as Discrete Affine Hull

Note that extrapolation to novel groups is dependent on the training groups

 
 
 

 

a1 a2

y1

y2

     Train 
     Eval 



Extrapolation to Discrete Affine Hull
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True Distribution:           

      
Learned Distribution:         

p(x |z) =
1

ℤ(z)
exp( − σ(z)TE(x))

̂p(x |z) =
1

ℤ̂(z)
exp( − σ(z)T ̂E(x))

Theorem: If then   
         
p( . |z) = ̂p( . |z) ∀z ∈ 𝒵𝗍𝗋𝖺𝗂𝗇 p( . |z) = ̂p( . |z) ∀z ∈ DAff(𝒵𝗍𝗋𝖺𝗂𝗇)



Generative Classification with AED
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True Model:        

   where  

      
Learned Model:  

   where  

p(z |x) = Softmax(log p(x |z) + log p(z)) p(x |z) =
1

ℤ(z)
exp( − σ(z)TE(x))

̂p(z |x) = Softmax(log ̂p(x |z) + log p(z)) ̂p(x |z) =
1

ℤ̂(z)
exp( − σ(z)T ̂E(x))

Corollary: If   then   p(z |x) = ̂p(z |x) ∀z ∈ 𝒵𝗍𝗋𝖺𝗂𝗇 p(z |x) = ̂p(z |x) ∀z ∈ DAff(𝒵𝗍𝗋𝖺𝗂𝗇)



Generative Classification with AED
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True Model:        

   where  

      
Learned Model:  

   where  

p(z |x) = Softmax(log p(x |z) + log p(z)) p(x |z) =
1

ℤ(z)
exp( − σ(z)TE(x))

̂p(z |x) = Softmax(log ̂p(x |z) + log p(z)) ̂p(x |z) =
1

ℤ̂(z)
exp( − σ(z)T ̂E(x))

Inferring partition function  is challenging!ℤ(z) = ∫ exp( − σ(z)TE(x))dx



Compositional Risk Minimization (CRM)
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•
Additive Energy Classifier:  

• CRM First Step: 

   where  

p̃(z |x) =
exp( − σ(z)TẼ(x) + log ̂p(z) − B̃(z))

∑z′￼∈𝒵𝗍𝗋𝖺𝗂𝗇 exp( − σ(z′￼)TẼ(x) + log ̂p(z′￼) − B̃(z′￼))

̂E, B̂ ∈ argminẼ,B̃R(p̃) R(p̃) = 𝔼(x,z)∼p[ − log p̃(z |x)]



Compositional Risk Minimization (CRM)
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•
Additive Energy Classifier: 

• CRM Second Step: 
 Construct  by replacing the prior  with  and learned bias  with extrapolated  bias  
 

p̃(z |x) =
exp( − σ(z)TẼ(x) + log ̂p(z) − B̃(z))

∑z′￼∈𝒵𝗍𝗋𝖺𝗂𝗇 exp( − σ(z′￼)TẼ(x) + log ̂p(z′￼) − B̃(z′￼))

̂q(z |x) ̂p(z) ̂q(z) B̂(z) B⋆(z)

B⋆(z) = log(𝔼x∼p(x)[
exp( − σ(z)T ̂E(x))

∑z̃∈𝒵𝗍𝗋𝖺𝗂𝗇 exp( − σ(z̃)T ̂E(x) + log p(z̃) − B̂(z̃)) ])



Compositional Risk Minimization (CRM)
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log q(y, a)

log p(y, a)
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Test log prior
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True Model:        

   where  

      
Learned Model (Train):  

   where  

Learned Model (Eval):  

   where  

p(z |x) = Softmax(log p(x |z) + log p(z)) p(x |z) =
1

ℤ(z)
exp( − σ(z)TE(x))

̂p(z |x) = Softmax(log ̂p(x |z) + log p(z)) ̂p(x |z) =
1

B̂(z)
exp( − σ(z)T ̂E(x))

̂q(z |x) = Softmax(log ̂q(x |z) + log ̂q(z)) ̂q(x |z) =
1

B⋆(z)
exp( − σ(z)T ̂E(x))

Provable Extrapolation with CRM

28

Theorem:    
If  , and  
then 

̂p(z |x) = p(z |x), ∀z ∈ 𝒵𝗍𝗋𝖺𝗂𝗇, ∀x ∈ ℝn ̂q(z) = q(z), ∀z ∈ 𝒵𝗍𝖾𝗌𝗍

̂q(z |x) = q(z |x), ∀z ∈ 𝒵𝗍𝖾𝗌𝗍, ∀x ∈ ℝn



Experiments: Setup
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Land Bird Water Bird

Land 
Background

Water 
Background

Train Distribution
Land Bird Water Bird

Land 
Background

Water 
Background

Test Distribution

Majority

Minority

Uniform

UniformMajority

UniformMinority

Uniform

•Factors  where  denotes the class label and  denotes the spurious attribute
•Compositional Shift:    but  

z = (y, a) y a
𝒵𝗍𝗋𝖺𝗂𝗇 ≠ 𝒵𝗍𝖾𝗌𝗍 𝒵𝗍𝖾𝗌𝗍 = DAff(𝒵𝗍𝗋𝖺𝗂𝗇)



Experiments: Results
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• We report test Average Accuracy and Worst 
Group Accuracy (WGA), averaged as a 
group is dropped from training and validation 
sets

• Last column is WGA under the dataset’s 
standard subpopulation shift benchmark, i.e. 
with no group dropped

• All methods have a harder time to generalize 
when groups are absent from training, but 
CRM appears consistently more robust

Dataset Method Average Acc WGA WGA
(No Groups Dropped)

Waterbirds

ERM 77.9 (0.1) 43.0 (0.1) 62.3 (1.2)

G-DRO 77.9 (0.6) 42.3 (2.5) 87.3 (0.3

LC 88.3 (0.7) 75.5 (0.8) 88.7 (0.3)

sLA 89.3 (0.4) 77.3 (0.5) 89.7 (0.3)

CRM 87.1 (0.7) 78.7 (1.6) 86.0 (0.6)

CelebA

ERM 85.8 (0.3) 39.0 (0.6) 52.0 (1.0)

G-DRO 89.2 (0.5) 67.7 (1.3) 91.0 (0.6)

LC 91.1 (0.2) 57.4 (0.6) 90.0 (0.6)

sLA 90.9 (0.1) 57.4 (0.3) 86.7 (1.9)

CRM 91.1 (0.2) 81.8 (1.2) 89.0 (0.6)

MetaShift

ERM 85.7 (0.4) 60.5 (0.6) 63.0 (0.0)

G-DRO 86.0 (0.4) 63.8 (0.6) 80.7 (1.3)

LC 88.5 (0.0) 68.2 (0.5) 80.0 (1.2)

sLA 88.4 (0.1) 63.0 (0.5) 80.0 (1.2)

CRM 87.6 (0.2) 73.4 (0.7) 74.7 (1.5)

MultiNLI

ERM 69.1 (0.7) 7.2 (0.6) 68.0 (1.7)

G-DRO 70.4 (0.1) 34.3 (0.5) 57.0 (2.3)

LC 75.9 (0.1) 54.3 (0.5) 74.3 (1.2)

sLA 76.4 (0.5) 55.0 (1.8) 71.7 (0.3)

CRM 74.6 (0.5) 57.7 (3.0) 74.7 (1.3)

CivilComments

ERM 80.4 (0.1) 55.8 (0.4) 61.0 (2.5)

G-DRO 80.1 (0.2) 61.6 (0.4) 64.7 (1.5)

LC 80.7 (0.1) 65.7 (0.5) 67.3 (0.3)

sLA 80.6 (0.1) 65.6 (0.1) 66.3 (0.9)

CRM 83.7 (0.1) 68.1 (0.5) 70.0 (0.6)

NICO++

ERM 85.0 (0.0) 35.3 (2.3) 35.3 (2.3)

G-DRO 84.0 (0.0) 36.7 (0.7) 33.7 (1.2)

LC 85.0 (0.0) 35.3 (2.3) 35.3 (2.3)

sLA 85.0 (0.0) 33.0 (0.0) 35.3 (2.3)

CRM 84.7 (0.3) 40.3 (4.3) 39.0 (3.2)

Table 1 Robustness under compositional shift. We compare the proposed Compositional Risk Minimization
(CRM) method to baseline Expected Risk Minimization (ERM) classifier training with no group information, and to
robust methods that leverage group labels: Group-DRO (G-DRO) (Sagawa et al., 2019), Logit Correction (LC) (Liu
et al., 2022b) and Supervised Logit Adjustment (sLA) (Tsirigotis et al., 2024). We report test Average Accuracy and
Worst Group Accuracy (WGA), averaged as a group is dropped from training and validation sets. Last column is
WGA under the dataset’s standard subpopulation shift benchmark, i.e. with no group dropped. All methods have a
harder time to generalize when groups are absent from training, but CRM appears consistently more robust (standard
error based on 3 random seeds).

Method Waterbirds CelebA MetaShift MulitNLI CivilComments NICO++

CRM (B̂) 55.7 (1.0) 58.9 (0.4) 58.7 (0.6) 29.2 (2.1) 51.9 (1.0) 31.0 (1.0)

CRM 78.7 (1.6) 81.8 (1.2) 73.4 0.7) 57.7 (3.0) 68.1 (0.5) 40.3 (4.3)

Table 2 Importance of bias extrapolation. We report Worst Group Accuracy, averaged as a group is dropped from
training and validation (standard error based on 3 random seeds). CRM (B̂) is an ablated version of CRM where we
use the trained bias B̂ instead of the extrapolated bias B? mandated by our theory. The extrapolation step appears
crucial for robust compositional generalization. Merely adjusting logits based on shifting group prior probabilities does
not suffice.

10



Experiments: Ablation
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• We report Worst Group Accuracy, averaged as a group is dropped from training and validation sets

• CRM ( ) is an ablated version of CRM where we use the trained bias  instead of the extrapolated bias   
mandated by our theory

• The extrapolation step appears crucial for robust compositional generalization. Merely adjusting logits based 
on shifting group prior probabilities does not suffice

B̂ B̂ B*

Dataset Method Average Acc WGA WGA
(No Groups Dropped)

Waterbirds

ERM 77.9 (0.1) 43.0 (0.1) 62.3 (1.2)

G-DRO 77.9 (0.6) 42.3 (2.5) 87.3 (0.3

LC 88.3 (0.7) 75.5 (0.8) 88.7 (0.3)

sLA 89.3 (0.4) 77.3 (0.5) 89.7 (0.3)

CRM 87.1 (0.7) 78.7 (1.6) 86.0 (0.6)

CelebA

ERM 85.8 (0.3) 39.0 (0.6) 52.0 (1.0)

G-DRO 89.2 (0.5) 67.7 (1.3) 91.0 (0.6)

LC 91.1 (0.2) 57.4 (0.6) 90.0 (0.6)

sLA 90.9 (0.1) 57.4 (0.3) 86.7 (1.9)

CRM 91.1 (0.2) 81.8 (1.2) 89.0 (0.6)

MetaShift

ERM 85.7 (0.4) 60.5 (0.6) 63.0 (0.0)

G-DRO 86.0 (0.4) 63.8 (0.6) 80.7 (1.3)

LC 88.5 (0.0) 68.2 (0.5) 80.0 (1.2)

sLA 88.4 (0.1) 63.0 (0.5) 80.0 (1.2)

CRM 87.6 (0.2) 73.4 (0.7) 74.7 (1.5)

MultiNLI

ERM 69.1 (0.7) 7.2 (0.6) 68.0 (1.7)

G-DRO 70.4 (0.1) 34.3 (0.5) 57.0 (2.3)

LC 75.9 (0.1) 54.3 (0.5) 74.3 (1.2)

sLA 76.4 (0.5) 55.0 (1.8) 71.7 (0.3)

CRM 74.6 (0.5) 57.7 (3.0) 74.7 (1.3)

CivilComments

ERM 80.4 (0.1) 55.8 (0.4) 61.0 (2.5)

G-DRO 80.1 (0.2) 61.6 (0.4) 64.7 (1.5)

LC 80.7 (0.1) 65.7 (0.5) 67.3 (0.3)

sLA 80.6 (0.1) 65.6 (0.1) 66.3 (0.9)

CRM 83.7 (0.1) 68.1 (0.5) 70.0 (0.6)

NICO++

ERM 85.0 (0.0) 35.3 (2.3) 35.3 (2.3)

G-DRO 84.0 (0.0) 36.7 (0.7) 33.7 (1.2)

LC 85.0 (0.0) 35.3 (2.3) 35.3 (2.3)

sLA 85.0 (0.0) 33.0 (0.0) 35.3 (2.3)

CRM 84.7 (0.3) 40.3 (4.3) 39.0 (3.2)

Table 1 Robustness under compositional shift. We compare the proposed Compositional Risk Minimization
(CRM) method to baseline Expected Risk Minimization (ERM) classifier training with no group information, and to
robust methods that leverage group labels: Group-DRO (G-DRO) (Sagawa et al., 2019), Logit Correction (LC) (Liu
et al., 2022b) and Supervised Logit Adjustment (sLA) (Tsirigotis et al., 2024). We report test Average Accuracy and
Worst Group Accuracy (WGA), averaged as a group is dropped from training and validation sets. Last column is
WGA under the dataset’s standard subpopulation shift benchmark, i.e. with no group dropped. All methods have a
harder time to generalize when groups are absent from training, but CRM appears consistently more robust (standard
error based on 3 random seeds).

Method Waterbirds CelebA MetaShift MulitNLI CivilComments NICO++

CRM (B̂) 55.7 (1.0) 58.9 (0.4) 58.7 (0.6) 29.2 (2.1) 51.9 (1.0) 31.0 (1.0)

CRM 78.7 (1.6) 81.8 (1.2) 73.4 0.7) 57.7 (3.0) 68.1 (0.5) 40.3 (4.3)

Table 2 Importance of bias extrapolation. We report Worst Group Accuracy, averaged as a group is dropped from
training and validation (standard error based on 3 random seeds). CRM (B̂) is an ablated version of CRM where we
use the trained bias B̂ instead of the extrapolated bias B? mandated by our theory. The extrapolation step appears
crucial for robust compositional generalization. Merely adjusting logits based on shifting group prior probabilities does
not suffice.

10



Thank You!



Challenges with Disconnected Support
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𝒵𝗍𝗋𝖺𝗂𝗇

Disconnected Support

Cannot extrapolate to  CPE(𝒵𝗍𝗋𝖺𝗂𝗇)

• Disconnected support makes it hard to extrapolate to 

• This is a fundamental challenge when the factors  are discrete!

CPE(𝒵𝗍𝗋𝖺𝗂𝗇)
z



How fast does Discrete Affine Hull grow?
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Theorem: Assume , i.e,  where each  has  possible values. 

If  , then  with probability  

m = 2 z = (z1, z2) zi d

|𝒵𝗍𝗋𝖺𝗂𝗇 | > 8cd log(d/2) DAff(𝒵𝗍𝗋𝖺𝗂𝗇) = 𝒵× ≥ 1 −
1
c

• As we add more factors to , then  would increase as well

• Can we show after enough samples  spans the full cartesian product 
  ?

𝒵𝗍𝗋𝖺𝗂𝗇 DAff(𝒵𝗍𝗋𝖺𝗂𝗇)
DAff(𝒵𝗍𝗋𝖺𝗂𝗇)

𝒵×
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• As we add more factors to , then  would increase as well

• Can we show after enough samples  spans the full cartesian product 
  ?

𝒵𝗍𝗋𝖺𝗂𝗇 DAff(𝒵𝗍𝗋𝖺𝗂𝗇)
DAff(𝒵𝗍𝗋𝖺𝗂𝗇)

𝒵×

D.4 Numerical Experiment for Discrete Affine Hull

(m = 5, d = 5) (m = 10, d = 10) (m = 20, d = 20)

1.0 1.0 0.986

Table 12 Numerical experiments to check the probability that the affine hull of random O(poly(m ⇤ d)) one-hot
concatenations span the entire set Z. We sample random 3 ⇤m ⇤ d one-hot vectors and report the frequency of times
out of 1000 runs a random one-hot concatenation is in the affine hull of the selected set of vectors.
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