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Compositional Shifts
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J -——q

* Some combinations of attributes are totally absent from the training distribution
but present in the test distribution
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Compositional Distribution Shifts y ™
. Assumption 1: p(x|z) = g(x|z) Vz € £~ ol k .
® Assump’[iOn 2: zteSt _¢_ :thram bUt zteSt Q zx . 1n train set : only 1n test

» Attribute Vector: z = (g, ...,2,) that characterizes the group for the input x
. Each attribute z; is categorical and can take d possible values.

. Train Distribution: p(x, z) = p(2)p(x|z) with support of z as Z 2"
. Test Distribution: g(x, z) = g(z)g(x | z) with support of z as Z e
. Cartesian Product: Z> = Z'n x Zan x ... Ztran



Subpopulation Shifts

Subpopulation Shift: p(x|z) = g(x|z) but p(2) # g(2)

Common Setup: Imbalanced distribution over group during training while
balanced distribution over groups during evaluation

Compositional Shifts are an extreme version of Subpopulation shifts!



Contributions

Build classifiers that are robust to compositional distributions shifts!

Theory of Compositional Shifts. For the family of additive energy
distributions, we prove that additive energy classifiers generalize compositionally
to novel combinations of attributes represented by a special mathematical
object, which we call discrete affine hull.

A Practical Method. We propose simple algorithm Compositional Risk
Minimization (CRM), which first trains an additive energy classifier and then
adjusts the trained classifier for tackling compositional shifts.



Generative Classification

p(e|w) = PR ow
p(x)

If we can reliably estimate p(x | y,, a,) then we can make predictions for the
novel group at test time

Challenge: We never observe samples from group (y,, @,) during training

/ / Train
/ / Eval




Cartesian Product Extrapolation (CPE)

Assume we have done density estimation perfectly for train groups,

p(x‘ylaal) :]?(x‘ylaal)
p(x‘yb al) — lz(x‘yb al)
px|yp, ay) = p(x |y, ay)

Does this imply p(x|y,,a,) = p(x|y,,a,) ?

/ / Train
/ / Eval




Additive Decoders

Assume p(x |y, a) as parameterized by an additive function
p(x|y,a) = N(x; f(y, a), ) where f(y, a) = f,(y) + f,(a)

Then it can be proved that CPE is possible!
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Additive Decoders
z=f(z)=) fP(zp)

Beb

Observation Latent Partition 6f {1,...,d,}

e.g. an image Factors  e.g. B = {{1.2},{3.4)) Sub-blocks of 7

Example: Images of moving balls

v=f) @) ey TR

LB, = (Zl,Zz) Coordinates of

LB, = (239 Z4) Coordinates of

|
+

f(B) Block-specific Decoder



Extrapolation
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Scalar Latent Dataset:
* Balls move only along y-axis

* Remove images where both balls
have high y-coordinate to get
L-shaped training support
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Extrapolation

Learned Latent
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Limitation: Additive Decoder

X = f(£) + [(£,) ><
X = ) (Z) X f({Z£)) + uy(Z) X {(£,) \/

Does not work for images with occlusions!




Additive Energy Distribution (AED)

p(x|2) = exp( _1TE, z)> where 17E(x,2) = Y Ey(x,2)
=1

Conditional distribution bartition Eunction Enerav Eunction Energy Function
of data given factors 9y for each component

* Assumption: The energy function can be decomposed as addition of energies with different
components of 7

* Natural choice to model inputs that satisfy a conjunction of characteristics
e More expressive than additive decoders; can model interaction between components of z via

the partition function Z(z) = [exp( — 11 E(x, z))dx
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Additive Energy Distribution (AED)

p(x|2) = exp( _1TE, z)) where 17E(x,2) = Y Ey(x,2)
=1

Conditional distribution bartition Eunction Enerav Eunction Energy Function
of data given factors . gy U for each component

* AED expressed with inner product:

where o(z) = [onehot(z,), ..., ()neh()t(zm)]T ,
Ex) =[E|(x,1),....E/(x,d),....E _(x,1),....E (x,d)]"
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CPE with Additive Energy Distributions

Assume we have perfectly estimated energy functions for train groups
oV, a1)TE(x) = o(y, al)TE(X)
G(yla Clz)TE(X) — G(yla dz)TE(_X)
0(y29 Cll)TE(.X) — 0()72, Cll)TE(X)

Does this imply 6(y,, a,)T E(x) = o(y,, a,)T E(x) ?

/ / Train
/ / Eval




CPE via affine combination of train groups

6, ar) E(x) = 6(3y, a))TE(x) — 6(yy, a)TE(x) + o(y,, ay)TE(x)
—> o(y,, a1)TE(x) — o(yy, a1)TE(X) + o(y,, az)TE(X)
—> 0()», az)TE(x)

If the novel group can be expressed as an affine combination of train
groups, then we can extrapolate the learned energies to the novel groups!

/ / Train
/ / Eval




Discrete Affine Hull Extension

k
DAff()={z€ Z|FaeR: o) = Y ao(x?), Y a;=1]
i=1 i=1
where of = {z\1,....z0) Ve ZF




Discrete Affine Hull Extension

DAff(of) = {z e ZF|3ae R o) = Zaia(z(i)),iai — 1}

=1 =1

where of = {z\1,....z0) Ve ZF
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* 1n train set

: only 1n test

G(H»T):G(/m”) — o( M,’) + of M’T)



Discrete Affine Hull Extension

. DAff(f) = {Z e ZF|3ae R o) = Z aia(z(i)),

i=1
where of = {z\1,....z0) Ve ZF




CPE is not always same as Discrete Affine Hull

Note that extrapolation to novel groups is dependent on the training groups

/ / Train
/ / Eval




Extrapolation to Discrete Affine Hull

True Distribution: p(x|z) = Ziz) exp( —o(2)! E(x))

1 )
Learned Distribution:  p(x|z) = 5 exp( _ a(z)TE(x)>
Z(Z

Theorem: If p(. |2) = p(.|z) Vz € Z™™" then p(.|2) = p(. | z) Vz € DAF(Z ")



Generative Classification with AED

True Model:

1
p(z| x) = Softmax(log p(x|z) + log p(z)) where p(x|z) = 70 exp( — a(z)TE(x))

Learned Model:

| .
p(z|x) = Softmax(log p(x|z) + log p(z)) where p(x|z) = — exp( — G(Z)TE()C))
Z(z)

Corollary: If p(z| x) = p(z|x) Yz € Z"" then p(z|x) = p(z|x) Vz € DAfAZ"™")



Generative Classification with AED

True Model:

p(z| x) = Softmax(log p(x|z) + log p(z)) where p(x|z) = Ziz) eXp( — a(z)TE(x)>

Learned Model:

p(z| x) = Softmax(log p(x|z) + log p(z)) where p(x|z) = Zi : eXp( — a(z)TE(x)>
Z,

Inferring partition function Z(z) = J'exp( — a(z)TE(x))dx is challenging!



Compositional Risk Minimization (CRM)

eXP( — 0(2) E(x) + log p(z) — B (z))

Additive Energy Classifier: p(z|x) =
% e = oTEW +logp) ~ B

 CRM First Step:

E. B e argming gR(p) where R(p) = = | T log p(z| x)

25



Compositional Risk Minimization (CRM)

exp( — o(2)TE(x) + log p(z) — B(z))

Additive Energy Classifier: p(z|x) =
) D exp( — 6(@)TE(x) + log p(z) - B'<z'>)

 CRM Second Step:
Construct g(z | x) by replacing the prior p(z) with §(z) and learned bias B(z) with extrapolated bias B*(z)

exp( — a(z)TE(x)> ] )

—x~p(x) [ A N
3 e e 50 ( = 0@ EC) + logp@) - BE@) )

B*(7) = log(

26



Compositional Risk Minimization (CRM)

---------------------------------------------------------------------------------------------------------------------------------------------------------------------

Deep Net Linear
.X — Backbone ——{ & ——{ Layer
e v
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Provable Extrapolation with CRM

True Model:

p(z|x) = Softmax(log p(x|z) + log p(z)) where p(x|z) = eXp( . a(z)TE(x))

Learned Model (Train):

| .
p(z]|x) = Softmax(log p(x|z) +|{log p(z)) where p(x|z) = ZAB( j exp( — G(Z)TE()C))
<
Learned Model (Eval): s ‘ |
qg(z|x) = Softmax(log g(x | z) +|log g(z)) where g(x|z) = exp( — a(z)TE(x))
B*(z)
Theorem:

If p(z|x) = p(z]|x), Vz € Z"" Vx € [

then g(z|x) = g(z|x), Vz € ZF* Vx € |

n
3

28

and §(z) = q(z),Vz € Z*



Experiments: Setup

vvater Yvater Uniform Unif
Background Background AHOHE

Land Land | |
Background Background Uniform Uniform

Land Bird Water Bird Land Bird Water Bird

Train Distribution Test Distribution

e Factors z = (y, a) where y denotes the class label and a denotes the spurious attribute
. Compositional Shift: ZFain £ Ztestpyyt Ztest = DAFA(Ftrainy

29



Experiments: Results

Dataset Method Average Acc WGA WeA

(No Groups Dropped)

ERM 77.9 (0.1) 43.0 (0.1) | 62.3 (1.2)
G-DRO  77.9 (0.6) 42.3 (2.5) | 87.3 (0.3
Waterbirds LC 88.3 (0.7) 75.5 (0.8) | 88.7 (0.3) o
TA soan maoe|serios We report test Average Accuracy and Worst
CRM 87.1 (0.7) 78.7 (1.6) | 86.0 (0.6) GI’Oup ACCUI’acy (WGA), averaged as 3
ERM 85.8 (0.3) 39.0 (0.6) | 52.0 (1.0)
G-DRO  89.2 (0.5) 67.7 (1.3) | 91.0 (0.6) i Tal i i
CelebA LC 9011 (02) 574 (0.6) | 90.0 (0.6) group is dropped from training and validation
sLA 90.9 (0.1) 57.4 (0.3) | 86.7 (1.9)
CRM 91.1 (0.2) 81.8 (1.2) | 89.0 (0.6) sets
ERM 85.7 (0.4) 60.5 (0.6) | 63.0 (0.0)
G-DRO  86.0 (0.4) 63.8 (0.6) | 80.7 (1.3)
MetaShift LC 88.5 (0.0) 68.2 (0.5) | 80.0 (1.2) . - ;
DA ssdon 63009 | 50000 Last column is WGA under the dataset’s
= L ) standard subpopulation shift benchmark, i.e.
ERM 69.1 (0.7) 7.2 (0.6) | 68.0 (1.7)
G-DRO  70.4 (0.1) 34.3 (0.5) | 57.0 (2.3) :
MultiNLI LC 75.9 (0.1) 54.3 (0.5) | 74.3 (1.2) with no group dropped
sLA 76.4 (0.5) 55.0 (1.8) | 71.7 (0.3)
CRM 74.6 (0.5) 57.7 (3.0) | 74.7 (1.3)
ERM 80.4 (0.1) 55.8 (0.4) | 61.0 (2.5) o - '
GDRO 80.1(0.2)  61.6 (0.4) | 647 (1.5) All methods have a harder time to generalize
e o6 (on 65600 | 66300 when groups are absent from training, but
CRM  83.7 (0.1) 68.1 (0.5) | 70.0 (0.6) :
RN 550 00, 353 23) | 553 29 CRM appears consistently more robust
G-DRO  84.0 (0.0) 36.7 (0.7) | 33.7 (1.2)
NICO++ LC 85.0 (0.0) 35.3 (2.3) | 35.3 (2.3)
sLA 85.0 (0.0) 33.0 (0.0) | 35.3 (2.3)
CRM  84.7 (0.3) 40.3 (4.3) | 39.0 (3.2)
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Experiments: Ablation

Method Waterbirds CelebA MetaShift MulitNLI CivilComments NICO-+-+

CRM (B) | 55.7 (1.0)  58.9 (0.4) 58.7 (0.6) 29.2 (2.1) 51.9 (1.0) 31.0 (1.0)
CRM 78.7 (1.6)  81.8(1.2) 73.407)  57.7(3.0) 68.1(0.5) 40.3 (4.3)

* We report Worst Group Accuracy, averaged as a group is dropped from training and validation sets

A

- CRM (B) is an ablated version of CRM where we use the trained bias B instead of the extrapolated bias B*
mandated by our theory

* The extrapolation step appears crucial for robust compositional generalization. Merely adjusting logits based
on shifting group prior probabilities does not suffice

31



Thank You!



Challenges with Disconnected Support

. Disconnected support makes it hard to extrapolate to CPE(Z ")

e This is a fundamental challenge when the factors 7 are discrete!

oczotrain

Disconnected Support

Cannot extrapolate to CPE(Z ") E X
—>
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How fast does Discrete Affine Hull grow?

. As we add more factors to Z", then DA(Z ") would increase as well

. Can we show after enough samples DAff(Z'™) spans the full cartesian product

F* ?

Theorem: Assume m = 2, i.e, z = (z;, 2,) where each z; has d possible values.

. . |
it | Z""| > 8cdlog(d/2) , then DAfAZ "™ = Z with probability > 1 — —

C
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How fast does Discrete Affine Hull grow?

. As we add more factors to Z", then DA(Z ") would increase as well

. Can we show after enough samples DAff(Z'™) spans the full cartesian product

F* ?

(m=>5,d=5) | (m=10,d=10) | (m = 20,d = 20)
1.0 1.0 0.986

Table 12 Numerical experiments to check the probability that the affine hull of random O(poly(m * d)) one-hot
concatenations span the entire set Z. We sample random 3 * m * d one-hot vectors and report the frequency of times
out of 1000 runs a random one-hot concatenation is in the affine hull of the selected set of vectors.

35



