
•  where                         and               }z = (y, a) y ∈ { , } a ∈ { ,

• Compositional Shifts:  Generalizing to novel combinations of attributes 
not in the training distribution 

• Theory of Compositional Shifts.  Assuming additive energy distribution, 
CRM provably generalizes compositionally to the discrete affine hull of 
training attributes. 

• A Practical Method.  Compositional Risk Minimization (CRM),   
• First train an additive energy classifier  
• Then extrapolates the learned bias for tackling compositional shifts

Compositional Risk Minimization

), ) σ( , )= σ( ,− σ( ,+σ( )

will be a sparse vector of length md containing m ones.

We also define a vector valued map E(x) = [E1(x, 1), . . . , E1(x, d), . . . , Em(x, 1), . . . , Em(x, d)]⇥ where
attribute taking the value zi.
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      where     p(x |z) = 1
ℤ(z) exp( − 1TE(x, z)) 1TE(x, z) =

m

∑
i=1

Ei(x, zi)
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Dataset Method Average Acc WGA WGA
(No Groups Dropped)

Waterbirds

ERM 77.9 (0.1) 43.0 (0.2) 62.3 (1.2)

G-DRO 77.9 (0.9) 42.3 (2.6) 87.3 (0.3)

LC 88.3 (0.9) 75.5 (1.8) 88.7 (0.3)

sLA 89.3 (0.4) 77.3 (1.4) 89.7 (0.3)

CRM 87.1 (0.7) 78.7 (1.0) 86.0 (0.6)

CelebA

ERM 85.8 (0.3) 39.0 (0.3) 52.0 (1.0)

G-DRO 89.2 (0.5) 67.8 (0.8) 91.0 (0.6)

LC 91.1 (0.2) 57.4 (0.5) 90.0 (0.6)

sLA 90.9 (0.2) 57.4 (1.3) 86.7 (1.9)

CRM 91.1 (0.2) 81.8 (0.5) 89.0 (0.6)

MetaShift

ERM 85.7 (0.4) 60.5 (0.5) 63.0 (0.0)

G-DRO 86.0 (0.3) 63.8 (1.1) 80.7 (1.3)

LC 88.5 (0.0) 68.2 (0.5) 80.0 (1.2)

sLA 88.4 (0.1) 63.0 (0.5) 80.0 (1.2)

CRM 87.6 (0.3) 73.4 (0.4) 74.7 (1.5)

MultiNLI

ERM 68.4 (2.1) 7.5 (1.3) 68.0 (1.7)

G-DRO 70.4 (0.2) 34.3 (0.2) 57.0 (2.3)

LC 75.9 (0.1) 54.3 (1.0) 74.3 (1.2)

sLA 76.4 (0.3) 55.0 (1.5) 71.7 (0.3)

CRM 74.3 (0.3) 58.7 (1.4) 74.7 (1.3)

CivilComments

ERM 80.4 (0.2) 55.9 (0.2) 61.0 (2.5)

G-DRO 80.1 (0.1) 61.6 (0.5) 64.7 (1.5)

LC 80.7 (0.1) 65.7 (0.5) 67.3 (0.3)

sLA 80.6 (0.1) 65.6 (0.2) 66.3 (0.9)

CRM 83.7 (0.1) 67.9 (0.5) 70.0 (0.6)

NICO++

ERM 85.0 (0.0) 35.3 (2.3) 35.3 (2.3)

G-DRO 84.0 (0.0) 36.7 (0.7) 33.7 (1.2)

LC 85.0 (0.0) 35.3 (2.3) 35.3 (2.3)

sLA 85.0 (0.0) 33.0 (0.0) 35.3 (2.3)

CRM 84.7 (0.3) 40.3 (4.3) 39.0 (3.2)

Robustness under compositional shift. We compare the proposed CRM method to baseline ERM classifier
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Cartesian Product Extrapolation

 ?q(y2, a2 |x) = ̂q(y2, a2 |x)

 p(y1, a2 |x) = ̂p(y1, a2 |x)
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a1 a2  p(y1, a1 |x) = ̂p(y1, a1 |x)

 p(y2, a1 |x) = ̂p(y2, a1 |x)

Additive Energy Distribution

Discrete Affine Hull

p(x|z) =
1

Z(z) exp
(
→ ↑ω(z), E(x)↓

)
,

)

ω(z) = [onehot(z1), . . . , onehot(zm)]→

will be a sparse vector of length md containing m ones. We also define a vector valued map

Rate of Growth of Discrete Affine Hull

Lower bound on train groups  to generalize to  groups:     dm 2c(md + d log d)

CRM adapts to the Bayes optimal classifier of test distribution

CRM outperforms  the baselines w.r.t  worst group accuracy

True Model:         

  where    

Learned Model (Train):   

  where   

Learned Model (Eval):   

  where   

p(z |x) = Softmax(log p(x |z) + log p(z)) p(x |z) = 1
ℤ(z) exp( − σ(z)TE(x))

̂p(z |x) = Softmax(log ̂p(x |z) + log p(z)) ̂p(x |z) = 1
B̂(z)

exp( − σ(z)T ̂E(x))
̂q(z |x) = Softmax(log ̂q(x |z) + log ̂q(z)) ̂q(x |z) = 1

B⋆(z) exp( − σ(z)T ̂E(x))


