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Motivation
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O So many features to recommend!
O Not all such messages are useful for every individual!
O Unaffordable or detrimental to run active experiments on all of them!

» Split-Treatment!
Use logged behavioral data to identify who are likely to benefit from a novel intervention. 3



ldentification of Split-Treatment

Prospective Experimental data Observational data
(Expensive, not available) (Cheap, massive, available)
Z A
Target treatment Outcome Ranking-proxy treatment Outcome

The ultimate goal Is to estimate the effect of a prospective treatment Z, but it is not observed.
==) Alternatively, Split-Treatment estimates the effect of a proxy treatment A.
==) Under proper assumptions, the ranking of the two heterogeneous effect can be aligned.



ldentification of Split-Treatment

» Assumptionl (Ignorability): P(Y|do(a), x) = P(Y]a, x)
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We pick a proxy treatment A such that:
==) A exists, with some natural variation, in our observational logs.
==) The effect of Z on Y should be mediated through A.



Estimation using Split-Treatment

- An end-to-end analysis pipeline of using Split-Treatment in feature/product recommendation.

1. Data processing 2. Estimate ITE 3. Refutation/sensitivity Likely best
and setup models analysis models

Validation via Message/rec.

Validation is added only if experimental | active experiment tagrgeting

data having Z is available.



Estimation using Split-Treatment

1. Data processing 2. Estimate ITE 3. Refutation/sensitivity

and setup models analysis

Inverse probability of treatment weighting (IPTW): Predict propensity scores to reweight
Individual outcome estimates and obtain unbiased ITE.

- Given the observational data D™ = {(x;, a;, y;)}, we learn outcome function f by minimizing
the following loss:

Z wi L(yi, f(xi, ai)),
i=1

P(a; = 1)
P(a; = 1|x;)

1-P(a; =1)

with stabilized IPTW: w; = a; - n .
1 - P(a; = 1|x;)

!

ITE“(x) = f(x,a = 1) - f(x,a = 0).

+(1-a;)-




Estimation using Split-Treatment

1. Data processing 2. Estimate ITE 3. Refutation/sensitivity

and setup models analysis

We use sensitivity analyses to eliminate unreliable models in the absence of experimental validation.
- Placebo test

Place a random variables as the treatment A
mm) Test if an estimator returns zero causal effect.
mm) Prune out those estimators that show significant non-zero causal effect.
- Unobserved-confounding test
Add a new confounder to the feature set with varying degrees of its effect on A and Y.
mm) Test if an estimator is less sensitive to the varying degrees of effect of the new confounder.

m=) Prune out those estimators that are sensitive to such changes



Experiment And Results (Simulation)

Simulation results
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Violation of the two Assumptions: Comparison between
the ground-truth rank and the proxy-estimated rank in
simulations with or without violation of the assumptions.

Sample id

(d) Ranking-proxy estimation
if Assumption 2 violated

IPTW_LR IPTW_SVM
Models

IPTW-LR is less sensitive to unobserved confounding. Box
plots are for 5 runs with different degrees of confounding.

Unobserved-confounding analysis: Comparison
between estimated causal effect with and without
unobserved confounding, for two causal models. 10



Experiment And Results (Real data)

- Real-world data: Product recommendation in a large software ecosystem.

» Experimental setup:
Treatment window: 3/29/2019 — 4/27/2019 (1 month) mm) Extract proxy treatment assignments.
Pre-Treatment window: 3/22/2019 — 3/28/2019 (1 week) mwmp Extract confounding factors.
Post-Treatment window: 4/28/2019 — 5/24/2019 (4 weeks) == Extract outcome measures.
» Split treatment:
Proxy treatment A: 15t use of the product in Treatment window.
Outcome Y: Sustained usage of the recommended product in Post-treatment window
» Data description:
Observational data: 2.2M
2.3% used the product in the Treatment window
Experimental data (Timeline aligned): 1.1M

66.1% exposed to Z, 5.7% vs. 5.3% used the product from the exposed vs. unexposed group
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Experiment And Results (Real data)

- RMSE of outcome prediction from the baseline models.
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CNN
IPTW-CNN
FTR
IPTW-FTR
FFR
IPTW-FFR
PR
IPTW-PR

Features-25 Features-25-Seq Features-106-Seq Features-106

FTR (Fast-Tree Regression): An efficient tree regression with gradient boosting

FFR (Fast-Forest Regression): An efficient random forest regression using the Fast-Tree learners.

PR (Poisson Regression): A linear regression with respect to minimizing Poisson loss instead of mean squared errors.

CNN (Convolutional Neural Network): A 2-layer 1-D convolutional network with Poisson loss.
Features-25 and Features-106: two static feature sets
Features-25-Seq and Features-106-Seq: two aggregated sequential feature sets

12



Experiment And Results (Real data)

- Sensitivity analysis (unobserved confounding)
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Fraction of the top 50-percentile individuals that remain in the top 50-percentile after adding
an observed confounder. Box plots are for 3 runs with different degrees of confounding.
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Experiment And Results (Real data)

- Validation on experimental data
Best model (IPTW-FFR) picked by the sensitivity analysis
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» Group ITE estimates by k quantiles and stratify each group into low (left) and high (right) subgroups.
»  Given the subgroup assignment, run 1V analysis on the experimental data.
»  Use the ground-truth CATE (from IV analysis) to validate:
the low (left) should be consistently lower than the high (right) subgroup across all the k groups! 14



Experiment And Results (Real data)

- Validation on experimental data

Worst model (IPTW-CNN) picked by the sensitivity analysis
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» Group ITE estimates by k quantiles and stratify each group into low (left) and high (right) subgroups.
»  Given the subgroup assignment, run 1V analysis on the experimental data.
»  Use the ground-truth CATE (from IV analysis) to validate:
the low (left) should be consistently lower than the high (right) subgroup across all the k groups! 15



Conclusion

- We presented a practical, observational analysis pipeline for
 ldentifying individuals likely to benefit from a novel treatment Z

« Using proper causal analysis of existing logs that contain proxy treatment A

- A key contribution:

» Refutation tests and sensitivity analyses enable a principled a priori identification of the

feature selection and elimination of unreliable algorithmic design.

- We validated our analysis with an A/B experiment in a large real-world setting.
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THANK YOU!
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