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Motivation

Microsoft 365
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intelligent video
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Split-Treatment!

So many features to recommend!
Not all such messages are useful for every individual!
Unaffordable or detrimental to run active experiments on

Use logged behavioral data to identify who are likely
to benefit from a novel intervention.
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Identification of Split-Treatment
( Prospective data > A i 1 (Ignorability): P(Y|do(a), x) = P(Y|a,x) > Assumption2 (C Eyeg [Compli x)| > o\
| ITE® (x) = B[Y|do(z = 1), x] - E[Y|do(z = 0),x] cmsg’ = Ereg[ITE@ ()]
=(Pa=1lz=1,x)-Pla=1]z=0,x)) o« Byeg [ITE@(x)]
Compliance(x)
- ((B[Y|a = 1,x] - E[Y|a = 0,x]).
 Targel réatment |  Ranking-proxy treatment  Ouiome )
*  Z:Prospective treatment *  X: Observed Confounder We pICk a proxy treatment A SuCh tha’t:
* A:Proxy treatment * U: No-unmeasured mm) A exists, with some natural variation, in our observational logs.
* Y: Outcome unobserved Confounder .
L m=) The effect of Z on Y should be mediated through A. )
Estimation using Split-Treatment
N
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1. Data processing
and setup

Validation is added only if experimental

2. Estimate ITE
models

3. Refutation/sensitivity
analysis

Validation via
active experiment

Likely best
models

Message/rec.
tagrgeting

data having Z is available.

wi=a;-

6. Inverse probability of treatment weightin?
(IPTW) to adjust ITE estimation bias.
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ITE@(x) = f(x.a = 1) - f(x,a =0).

Pla; = 1)x;

1-Pla = 1lx))
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(3. Sensitivity analyses to eliminate unreliable
models in the absence of experimental validation.

« Placebo test

« Unobserved-confounding test

degrees of its effect on A and Y.

degrees of effect of the new confounder.

.

Place a random variables as the treatment A

== Test if an estimator returns zero causal effect.

‘Add a new confounder to the feature set with varying

=) Test if an estimator is less sensitive to the varying
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Experiments and Results

Rank of CATE

'

Rank of CATE

_______________-----‘\

~

. . \ .
Simulation o Conclusion '
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Cnn:‘lfs;i: IPTW-LR is less sensitive to unobserved confounding. Box 1| 1
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1 Violation of the two Assumptions: Comparison between Unobserved-confounding analysis: Comparison  '1 5 We validated our analysis with an A/B experiment in a large |
: the ground-truth rank and the proxy-estimated rank in between estimated causal effect with and without : : real-world setting. :
\ simulations with or without violation of the assumptions. unobserved confounding, for two causal models. 1| 1
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! Real-world data « Sensitivity analysis (unobserved confounding)
i * RMSE of outcome prediction from the baseline models.
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! Foatures-25 Featres25Seq  Featres106.Seq  Features-106 Fraction of the top 50-percentile individuals that remain in the top S0-percentile after adding
H L . an observed confounder. Box plots are for 3 runs with different degrees of confounding.
H * Validation on experimental data
| Best model (IPTW-FFR) picked by the sensitivity analysis ‘Worst model (IPTW-CNN) picked by the sensitivity analysis
: IPTW-FFR on Features-106 FFR on Features-106 (Non-causal) IPTW-CNN on Features-25-Seq
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o Least consistent in ranking;
o Most sensitive to the varying |
degrees of effecton Aand Y |
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CNN on Features-25-Seq (Non-causal) :
[T

o Leftis NOT consistently (NOT :

1

1

1

1

1

1

1

1

1

1 significantly) lower than Right across all
‘ the k quantiles.




