Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers

"Do the right thing": machine learning and causal inference for improved decision making

Divyat Mahajan (Microsoft Research India) Chenhao Tan (University of Colorado Boulder) Amit Sharma (Microsoft Research India)

Explainability in ML

- Critical decision-making situations in which the predictions of a black box ML model would not be sufficient
 - Healthcare: You have a 90% risk of heart disease in the next 2 years
 - Finance: You have been denied a loan due to a high risk prediction
- Explanations should be **interpretable** and can serve a dual purpose:
 - Shed more light on the bias of the model
 - Should have some meaningful value for the user
- We focus on Local Explanations for Machine Learning Classifiers

Counterfactual Explanations

- Explanations based on Feature Importance
 - Fidelity-Interpretability Tradeoff
 - No Actionable Advice
- Counterfactual (CF) Explanations
 - Perturbations in the original feature that could have led to change in the prediction of the model
- CF generation generic formulation: $arg min Loss(f(x^{cf}), y')$ + $Distance(x, x^{cf})$

Loan Application Scenario

We cannot offer you loan currently Contact us in few weeks

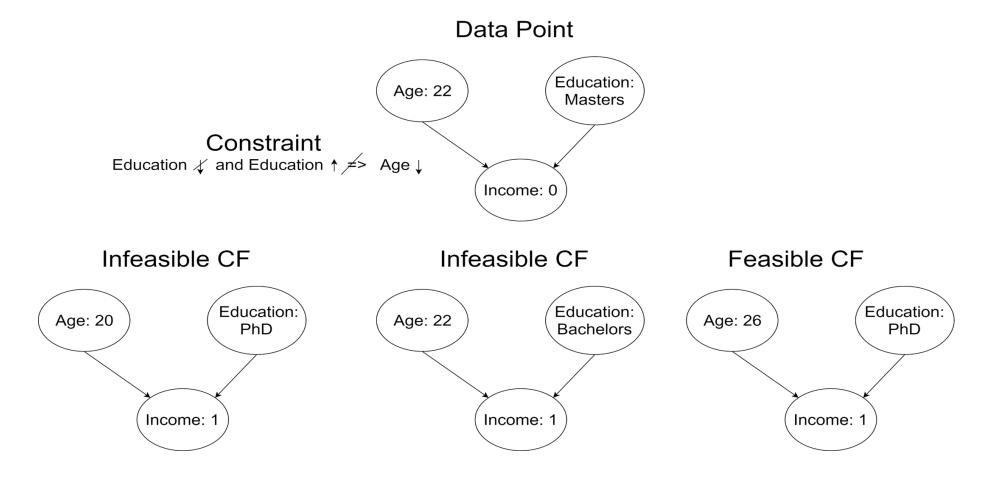
Most common reasons for the rejection

- 1. Credit Score
- 2. Educational Qualification

Counterfactual Explanation You would have received the loan if your Education was PhD

Issues with Counterfactual Explanations

• Independent feature perturbation lead to infeasible CF explanations



Feasibility of Counterfactual Explanations

Notation

- Machine Learning Classifier f: $X \rightarrow Y$
- x in X are features, y in Y is categorical output
- (x^{cf}, y^{cf}) represents the counterfactual explanation for data point x under classifier f
- Structural Causal Models (SCM) M: < U, V, F >
 - U are the endogenous variables, V are the exogenous variables
 - U and V do not contain the outcome Y
- Global Feasibility of CF Explanations:
 - Validity: $y^{cf} = y'$, where y'represents the target class
 - Changes from x to x^{cf} satisfies all the constraints given by SCM M
 - Exogenous variables x^{cf}_{exog} in U constrained within their input domain

Preserving Feasibility

- Causal Proximity Regulariser:
 - Perturbation in feature v should be causally related to perturbations in other features instead of just being proximal
 - Given the knowledge of SCM, we can preserve global feasibility with a better notion of Distance for endogenous nodes
 - $DistCausal(x_v, x_v^{cf}) = Distance(x_v^{cf}, f(x_{v_{p1}}^{cf}, \dots, x_{v_{pk}}^{cf}))$
- Learning from Oracle/Expert:
 - Modelling the constraint implicitly via Oracle which provides access to feasibility score
 - Oracle may represent user/human feedback
 - Learn to mimic the Oracle using fixed number of queries (q^{cf})
 - *OracleScore*: $e^{-(x^{cf} q^{cf})^T (x^{cf} q^{cf})}$
 - Maximise OracleScore for queries that received higher feasibility score via Oracle

Conclusion

- Poor performance of state of the art method on feasibility of CF Explanations
- Generative framework for CF Explanations
 - Computational advantage
 - Easy extensions to preserve constraints
- Visit our Poster **#57** to learn more

