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Local Explanation Methods
Convey Different Pictures

Feature Attributions and Counterfactuals
often disagree even for simple linear models
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Complementarity of Local Explanation Methods
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Contributions:

* A unifying framework based on Actual Causality (Halpern, 2016) to
interpret Feature Attributions and Counterfactual Explanations

* Evaluate attribution-based methods on the necessity and sufficiency of their
top-ranked features using Counterfactual Explanations



Actual Causality and Model Explanations
(a, B) goodness of an explanation

Necessity: o = Pr(xj is a cause of y*lxj =ay= y$)

“is a cause” > x; = a satisfies the definition of actual causality

Sufficiency: f=Pr(y =y’ |xj <« a)



Counterfactuals Measure Necessity and
Feature Attributions Measure Sufficiency

Counterfactual Attribution-based
explanation (acr) explanations (f)
* Optimizes Necessity * Optimizes Sufficiency
* Perturbed feature subset x;isa * Importance of x; can be
but-for cause of the original output interpreted as its sufficiency
* acr summarizes the outcomes of all * B provides the fraction of all
such perturbations and ranks any contexts where x; — a leads
feature subset for their necessity to y = y*

acr =Pr((xj —a' = y#y)lxj=axj=by=y") p=Pr(y=y|xj < a)



Building Blocks of Explanations:
Necessity and Sufficiency

Counterfactual Explanations to evaluate Feature Attribution Methods

Zi,xjiﬂ 1(CF;) 2.i L(CFj) B Zf,xj{—ﬂ 1 (CF;)

ity = Sufficiency =
Necessity CFs N y 1CF = N 2CF = N
Steps: Steps:
* Generate CFs by changing only x; * Generate CFs by fixing only x;
* Compute the fraction of times that * Compare the fraction of unique CFs
changing x; leads to a valid generated using all features to that

counterfactual example generated while keeping x; constant
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Results: Evaluating Necessity and Sufficiency

00 100 o
. =
75 c 75 ﬁ
50 E 50 L:I':} Data: Adult-Income, LendingClub,
- A o o German-Credit,
- HospitalTriage (222 features)
0 ofm . s 4
1st  2nd 3rd  rest 1st 2nd 3rd

Methods: LIME, SHAP, DiCE, WachterCF
LIME(WachterCF) -3¢ LIME(DICE)

=~ SHAP(WachterCF) —@— SHAP(DICE)



—

Necessity

Results: Evaluating Necessity and Sufficiency

00 100 o
. =
75 c 75 ﬁ
50 E 50 L:I':} Data: Adult-Income, LendingClub,
- A o o German-Credit,
- HospitalTriage (222 features)
0 ofm . s 4
1st  2nd 3rd  rest 1st 2nd 3rd

Methods: LIME, SHAP, DiCE, WachterCF
LIME(WachterCF) -3¢ LIME(DICE)

=~ SHAP(WachterCF) —@— SHAP(DICE)

Key Results:

* Highly ranked features may often neither be necessary nor sufficient
explanations of a model’s predictions

* Necessity and Sufficiency become weaker for top-ranked features as the
number of features in a dataset increases



Summary
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* Unifying framework for attribute-based and counterfactual examples using actual causality

* Evaluate attribution-based methods on the necessity and sufficiency of their top-ranked
features using counterfactual explanations

* Generate necessity-inspired feature attributions



