Domain Generalization: Introduction

- Aim: Learn a single classifier (f) with training data (X, Y) sampled from *m* domains that generalizes well to data from unseen domains/distributions
- Assumption: There exist stable (causal) features (X_c) whose relationship with outcome Y, $P(Y|X_c)$, is invariant across domains
- Notation:
- Representation network: $\Phi : \mathcal{X} \to \mathcal{C}$; Classification network: $h : \mathcal{C} \to \mathcal{Y}$. Ideal solutions $h^*, \Phi^* = \arg\min_{h,\Phi} \mathbb{E}_{(d,x,y)}[l(y, h(\Phi(x)))]$ satisfy $x_c = \Phi^*(x)$ and
- $f^* = h^*(\mathbf{x}_c)$
- Contributions:
- Identify conditions for failure of class-conditional invariance objective [1, 2]
- Propose object-invariant condition for domain generalization, along with a novel approach to satisfy it in practical scenarios

Training Domains

Rotation Angles: 15, 30, 45, 60, 76

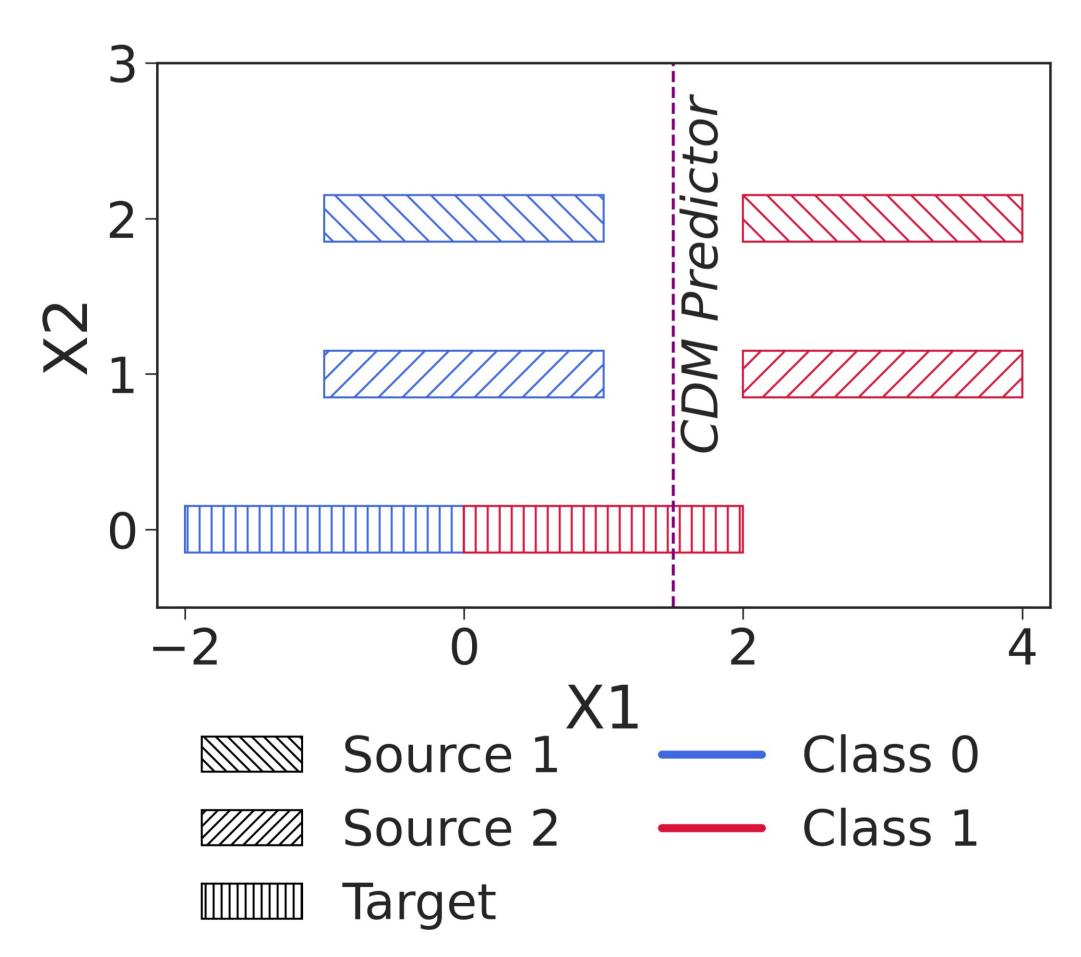


Figure: $x_1 = x_c + \alpha_d$, $x_2 = \alpha_d$ where x_c and α_d are unobserved

- Class-Conditional Invariance: [1, 2] The learnt representation $\phi(x)$ should satisfy $\phi(x) \perp d|y$, which is satisfied by $\phi(x_1, x_2) = x_1$ for the example above
- Invariant predictor not recovered: The classifier built over $\phi(x_1, x_2) = x_1$ gets only Execution of our approach: 62.5 percent test accuracy
- Intra-Class Variation: The reason for failure of class-conditional invariance is due to varying conditional distribution of stable features, $p(x_c|y)$, across domains (refer to proposition 1 in paper for more details)
- In some datasets, class-conditional invariance can be satisfied by spurious features (refer to slab dataset in paper for more details)

Domain Generalization using Causal Matching

Divyat Mahajan¹ Shruti Tople² Amit Sharma¹

¹Microsoft Research, India ²Microsoft Research, UK

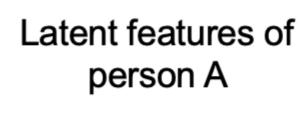
Paper: arxiv/2006.07500 Code: github/microsoft/robustdg

Causal View of Domain Generalization

Test Domains

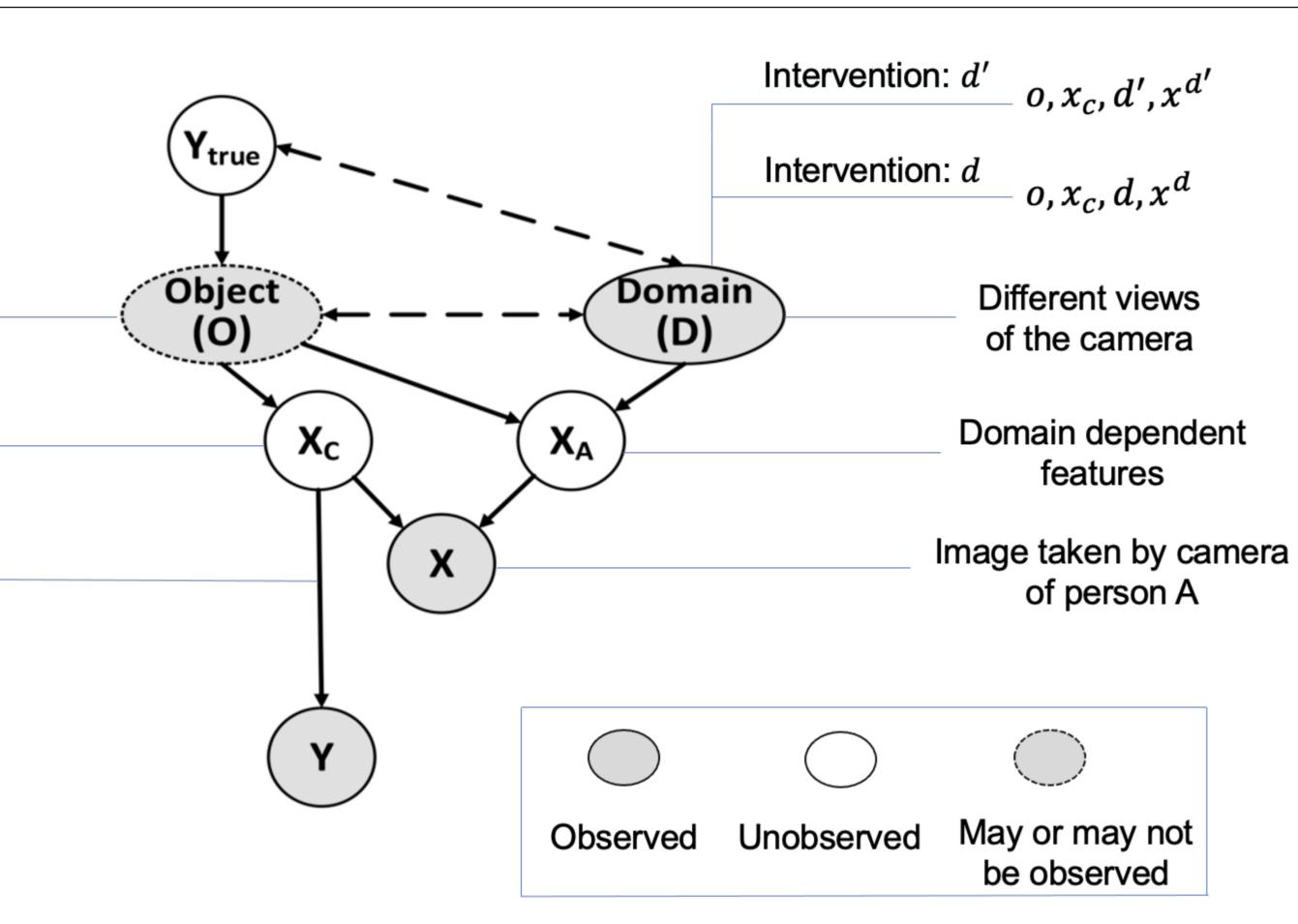
Rotation Angles: 0, 90

Why Class-Conditional Domain Invariance Fails?



on Node Y





- **Domain as intervention:** For each observed x^d , there are a set of counterfactual inputs x^{d} where $d \neq d'$, but both have similar causal features x_{c}
- Object-Invariant Condition: $X_c \perp D | O$
- Empirical: $\sum_{\Omega(j,k)=1; d\neq d'} \operatorname{dist}(\Phi(\mathbf{x}_{i}^{(d)}), \Phi(\mathbf{x}_{k}^{(d')})) = 0; \Omega = 1 \text{ if } o_{i}^{d} = o_{k}^{d'}, \Omega = 0 \text{ otherwise}$

Perfect Match: Proposed approach for known true objects

- Loss: Empirical Risk Minimization Loss + $\lambda \times$ (Object-Invariant Constraint)
- Intuition: Match counterfactuals (same base object pairs) instead of same class pairs to account for intra-class variability

MatchDG: Proposed approach for unkown true objects

- Goal: Learn a match function such that $\Omega(\mathbf{x}, \mathbf{x}') = 1$ when $Dist(\mathbf{x}_c, \mathbf{x}'_c)$ is small • Assumption: Same-class inputs are closer in true causal representation than
- different-classes inputs
- Simple Baseline: Use contrastive loss to learn a representation under which same-class inputs become close than different-class inputs
- Our approach: Contrastive Learning with iterative updates to positive matches to help in capturing intra-class variance across domains

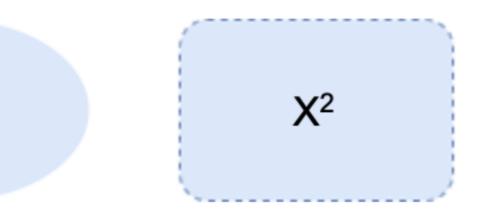
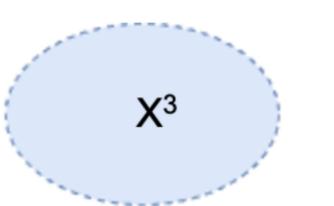
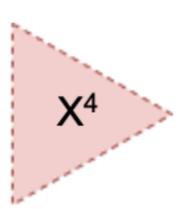


Figure: Different line styles indicate different domains; different colors indicate different class labels; different shapes indicate different base objects

X

- Contrastive Loss: With x^1 as anchor, Positive Match (x^1) = x^2 and Negative Match (x^1) = x^4 , optimize: min_{ϕ} $Dist(\phi(x^1), \phi(x^2)) - Dist(\phi(x^1), \phi(x^4))$ • Iterative Update: Update positive match for x^1 :
- $min_i Dist(\phi(x^1, \phi(x^i))) \ \forall x^i \in d^2, y^1 = y^i$
- Updated Contrastive Loss: Positive Match(x^1) updated to x^3 that shares the same base object as x^1 ; optimize contrastive loss with new positive matches



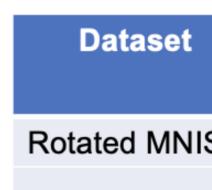


Dataset

Rot MNIST (5) Rot MNIST (3) Fashion MNIST (5) Fashion MNIST (3)

Figure: Out of Domain Accuracy (OOD) Results: Brackets denote number of source domains for Rotated & Fashion MNIST

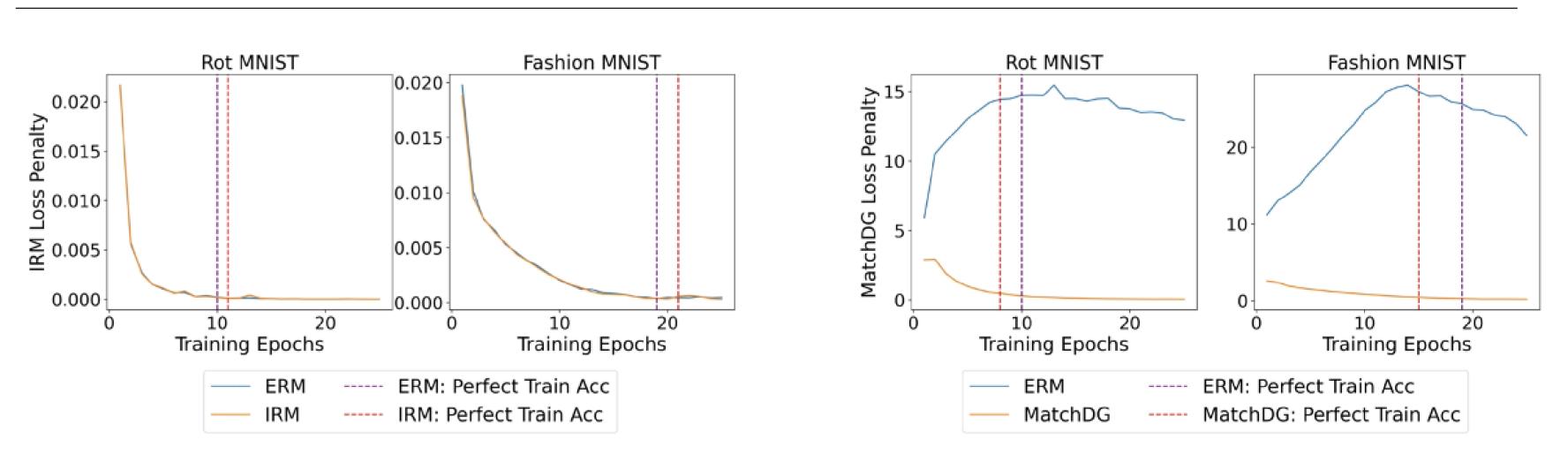
Does MatchDG learn the causal features?



Fashion MNI

Figure: Results for quality of match function using following metrics: Overlap of top-1 match with the true object match, Overlap of top-10 matches with the true object match, Mean rank of the true object match in the learnt representation (lower is better)

MatchDG works even under the zero training error regime



- affected under zero training error
- representations," in AAAI, 2018.
- arXiv:1907.02893, 2019.

ERM	Best Prior Work	Rand Match	MatchDG	PerfMatch
93.0	94.5	93.4	95.1	96.0
76.2	77.7	78.3	83.6	89.7
77.9	78.7	77.0	80.9	81.6
36.1	37.8	38.4	43.8	54.0

Results: OOD accuracy on DG benchmarks

 MatchDG, Perfect Match obtain SOTA accuracy and improvement over baseline is highlighted in the case of fewer source domains

• MatchDG obtains comparable performance to SOTA approaches on more realistic benchmarks like PACS (refer to section 6.2 in paper for more details)

	Method	Overlap (%)	Top 10 Overlap (%)	Mean Rank			
IST	ERM	15.8	48.8	27.4			
	MatchDG	28.9	64.2	18.6			
IST	ERM	2.1	11.1	224.3			
	MatchDG	17.9	43.1	89.0			

• Zero training error does not necessarily imply similar representations for each class, resulting in ERM unable to satisfy MatchDG penalty

• Methods based on comparing variation in loss across domains, like IRM [3], will be

References

[1] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao, ``Deep domain generalization via conditional invariant adversarial networks," in ECCV, pp. 624--639, 2018.

[2] Y. Li, M. Gong, X. Tian, T. Liu, and D. Tao, ``Domain generalization via conditional invariant

[3] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, ``Invariant risk minimization," arXiv preprint