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Domain Generalization: Introduction

Aim: Learn a single classifier (f) with training data (X, Y) sampled from m domains

that generalizes well to data from unseen domains/distributions

Assumption: There exist stable (causal) features (Xc) whose relationship with

outcome Y, P (Y |Xc), is invariant across domains

Notation:

Representation network: Φ : X → C; Classification network: h : C → Y .

Ideal solutions h∗, Φ∗ = arg minh,Φ E(d,x,y)[l(y, h(Φ(x)))] satisfy xc = Φ∗(x) and
f ∗ = h∗(xc)

Contributions:

Identify conditions for failure of class-conditional invariance objective [1, 2]

Propose object-invariant condition for domain generalization, along with a novel

approach to satisfy it in practical scenarios

Why Class-Conditional Domain Invariance Fails?

Figure: x1 = xc + αd, x2 = αd where xc and αd are unobserved

Class-Conditional Invariance: [1, 2] The learnt representation φ(x) should satisfy

φ(x) ⊥⊥ d|y, which is satisfied by φ(x1, x2) = x1 for the example above

Invariant predictor not recovered: The classifier built over φ(x1, x2) = x1 gets only

62.5 percent test accuracy

Intra-Class Variation: The reason for failure of class-conditional invariance is due

to varying conditional distribution of stable features, p(xc|y), across domains (refer

to proposition 1 in paper for more details)

In some datasets, class-conditional invariance can be satisfied by spurious

features (refer to slab dataset in paper for more details)

Causal View of Domain Generalization

Domain as intervention: For each observed xd, there are a set of counterfactual

inputs xd
′
where d 6= d

′
, but both have similar causal features xc

Object-Invariant Condition: Xc ⊥⊥ D|O
Empirical:

∑
Ω(j,k)=1;d6=d′ dist(Φ(x(d)

j ), Φ(x(d′)
k )) = 0; Ω = 1 if od

j = od
′

k , Ω = 0 otherwise

Perfect Match: Proposed approach for known true objects

Loss: Empirical Risk Minimization Loss + λ× (Object-Invariant Constraint)

Intuition: Match counterfactuals (same base object pairs) instead of same class

pairs to account for intra-class variability

MatchDG: Proposed approach for unkown true objects

Goal: Learn a match function such that Ω(x, x′) = 1 when Dist(xc, x′
c) is small

Assumption: Same-class inputs are closer in true causal representation than

different-classes inputs

Simple Baseline: Use contrastive loss to learn a representation under which

same-class inputs become close than different-class inputs

Our approach: Contrastive Learning with iterative updates to positive matches to

help in capturing intra-class variance across domains

Figure: Different line styles indicate different domains; different colors indicate

different class labels; different shapes indicate different base objects

Execution of our approach:

Contrastive Loss: With x1 as anchor, Positive Match(x1)= x2 and Negative

Match(x1)= x4, optimize: minφ Dist(φ(x1), φ(x2)) − Dist(φ(x1), φ(x4))
Iterative Update: Update positive match for x1:

mini Dist(φ(x1, φ(xi))) ∀xi ∈ d2, y1 = yi

Updated Contrastive Loss: Positive Match(x1) updated to x3 that shares the

same base object as x1; optimize contrastive loss with new positive matches

Results: OOD accuracy on DG benchmarks

Figure: Out of Domain Accuracy (OOD) Results: Brackets denote number of source

domains for Rotated & Fashion MNIST

MatchDG, Perfect Match obtain SOTA accuracy and improvement over baseline is

highlighted in the case of fewer source domains

MatchDG obtains comparable performance to SOTA approaches on more realistic

benchmarks like PACS (refer to section 6.2 in paper for more details)

Does MatchDG learn the causal features?

Figure: Results for quality of match function using following metrics: Overlap of

top-1 match with the true object match, Overlap of top-10 matches with the true

object match, Mean rank of the true object match in the learnt representation

(lower is better)

MatchDGworks even under the zero training error regime

Zero training error does not necessarily imply similar representations for each

class, resulting in ERM unable to satisfy MatchDG penalty

Methods based on comparing variation in loss across domains, like IRM [3], will be

affected under zero training error
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