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Feasibility of Counterfactual Explanations

- Counterfactual Explanations promise to provide faithful
and actionable explanations for ML classifiers

- Actionabllity of counterfactual explanations rests on

preserving certain feasiblility constraints
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Generative Modelling of CF Explanations

- Variational Inference based approach:

- Encoder g(z|x,y") embeds data point into the latent space

- Decoder p(x“/|z,y") generates the counterfactual in class y’ from
the latent encoding

- Learn the encoder and decoder by minimizing the following loss:

min E, . ,» [ Distance(x,x) + A «
HingeLoss(f (x7),y",B) 1 + KL(q(z|x,y)||p(2))

Causal Connection to Feasibility

- Global Feasibility:
A counterfactual explanation < x_, y.r > Is globally
feasible if it is valid (y., = y' ) and changes from
x to x satisfies all the constraints given by the
underlying causal model
- We can use the causal knowledge to define a better
notion of Distance to preserve constraints (SCMGenCF)
DistCausal(x,,x, )
= Distance( x,* , f (xvplcf , ....,xvpkcf )

where v,,..,v,, are the direct causes of
v and f represents the ML Classifier to be explained
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Preserving Feasibility via Oracle

- Knowledge of Structural Causal Models might be
iImpractical in real life datasets

- Oracle implicitly models the constraint and provides a
black box access via feasibility score
- Oracle can represent user feedback to preserve
user specific / local constraints
- Oracle could be used to represent complex global
constraints which are hard to optimize directly
- Score corresponding to Labelled CFs (g¢/) via Oracle:

_(~Cf A \TrACf  HCf
OracleGenCF: e~ (* " -a7) (x7-q7)
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Our Approaches

BaseGenCF: Variational Inference based loss

AEGenCF: BaseGenCF + Reconstruction Loss on CF via
Auto Encoder [1]

SCMGenCF: BaseGenCF + Causal Proximity Regularizer

ModelApproxGenCF: BaseGenCF + Constraint Based
LOSS

OracleGenCF: BaseGenCF + Loss with CFs labelled via
Oracle

References

- Simple-BN: Synthetic dataset with monotonic
constraint

- Sangiovese: Bayesian Network with monotonic
constraint

- Adult: Real World dataset with unary and monotonic
constraint

- Evaluation Metrics:

- Validity, Proximity, Constraint Feasibility, Causal

Edge Score, Causal Graph Score
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