Interventional Causal Representation Learning

01 Motivation

Current AI systems are still limited in terms of planning and reasoning abilities

Humans plan \& reason using abstract concepts (e.g. objects \& their properties)

Causal models present a natural framework to represent such abstract concepts - latent causal variables and reason about interventions on them

Input

Causal variables

- location
- shape
- color

How to train representation learners that extract causal variables from raw data (e.g., images) with minimal supervision?

02 Problem Setting

True latent variables:

Observational distribution: $z \sim \mathbb{P}_{Z}$ with support \mathscr{Z}
Interventional distribution: $z \sim \mathbb{P}_{Z}^{(i)}$ with support $\mathscr{Z}^{(i)}$

Mixing function: $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$, which is injective

Observations: $x \leftarrow g(z)$ with supports $\mathscr{X}, \mathscr{X}^{(i)}$ in observational and interventional distribution

Learn an auto encoder:

Reconstruction identity: $h \circ f(x)=x, \forall x \in \mathscr{X} \cup \mathscr{X}^{(i)}$
$\hat{z} \triangleq f(x)$
Affine Identification: $\hat{z}=A z+c$
Permutation and scaling Identification: $\hat{z}=\Pi \Lambda z+c$

Prior Work:

Parametric assumptions of latent distribution

Independent Component Analysis (ICA):

Latent are independent and non-gaussian

Non-Linear ICA:

Latent are conditionally independent given auxiliary variables (Hyvärinen et al.)

Weak supervision with contrastive pairs (x, \tilde{x})
(Brehmer et al. ; Ahuja et al.)

03 Identification under Hard do Interventions

- Assumption 1: g is an injective polynomial
- Assumption 2: $\mathbb{P}_{Z}^{(i)}$ is hard do-intervention on $z_{i}, \mathscr{Z} \cup \mathscr{Z}^{(i)}$ has a non-empty interior
- Do intervention constraint: $f_{k}(x)=z^{\dagger}, \forall x \in \mathscr{X}^{(i)}$

Theorem (Informal): If Assumption 1 and 2 hold, then the solution to the reconstruction identity with h is a polynomial and do intervention constraint satisfies

$$
\hat{z}_{k}=e z_{i}+b, \forall z \in \mathscr{Z} \cup \mathscr{Z}^{(i)}
$$

- Assumption 1:g is an injective polynomial
- Assumption 2: $\mathbb{P}_{Z}^{(i)}$ is hard do-intervention on z_{i} and multiple such interventions
- Approximate identification of the intervened component

04 Identification under Imperfect Interventions

Independent Support (IS): $\quad \mathscr{Z}_{12}=\mathscr{Z}_{1} \times \mathscr{Z}_{2}$
Statistical Independence \Longrightarrow IS

Observational

Perfect

Imperfect with IS

Independent Support

Dependent Support

Geometric Intuition:

$\left(\hat{z}_{1}, \hat{z}_{2}\right)$ is a transformation over $\left(z_{1}, z_{2}\right)$ such that we do not have identification upto permutation \& scaling We loose IS property with such transformations; the only to preserve IS is to have transformations that recover latents unto permutation \& scaling

- Assumption 3: For $\mathbb{P}_{Z}^{(i)} \exists \mathcal{S}$ s.t. support of z_{i} is independent of other latents in \mathcal{S}
- IS constraint: For a set \mathcal{S}^{\prime} support of \hat{z}_{k} is independent of other latents in \mathcal{S}^{\prime}

Theorem (Informal): If Assumption 1, 3 hold, then the solution to the reconstruction identity with h is a polynomial and support independence constraint achieves block-affine identification

$$
\hat{z}_{k}=a_{k}^{\top} z+c_{k}, \hat{z}_{m}=a_{m}^{\top} z+c_{m}, \forall m \in \mathcal{S}^{\prime}
$$

a_{k} and a_{m} do not share non-zero components.

Thank you

