Interventional Causal Representation Learning

Kartik Ahuja FAIR Divyat Mahajan Mila-Quebec Al Institute Yixin Wang University of Michigan

Yoshua Bengio Mila-Quebec Al Institute

01 Motivation

Current AI systems are still limited in terms of planning and reasoning abilities

Humans plan & reason using abstract concepts (e.g. objects & their properties)

Causal models present a natural framework to represent such abstract concepts — latent causal variables and reason about interventions on them

How to train representation learners that extract causal variables from raw data (e.g., images) with minimal supervision?

Desired output

- Causal variables
- location

02 Problem Setting

True latent variables:

Observational distribution: $z \sim \mathbb{P}_Z$ with support \mathcal{Z} Interventional distribution: $z \sim \mathbb{P}_Z^{(i)}$ with support $\mathscr{Z}^{(i)}$

Mixing function: $g : \mathbb{R}^d \to \mathbb{R}^n$, which is injective

Observations: $x \leftarrow g(z)$ with supports \mathscr{X} , $\mathscr{X}^{(i)}$ in observational and interventional distribution

Learn an auto encoder:

Reconstruction identity: $h \circ f(x) = x, \forall x \in \mathcal{X} \cup \mathcal{X}^{(i)}$ $\hat{z} \triangleq f(x)$

Affine Identification: $\hat{z} = Az + c$

Permutation and scaling Identification: $\hat{z} = \Pi \Lambda z + c$

Parametric assumptions of latent distribution

Independent Component Analysis (ICA):

Latent are independent and non-gaussian

Latent are conditionally independent given auxiliary variables (Hyvärinen et al.)

Weak supervision with contrastive pairs (x, \tilde{x})

(Brehmer et al. ; Ahuja et al.)

03 Identification under Hard do Interventions

🔿 Meta Al

- Assumption 1: g is an injective polynomial
- Assumption 2: $\mathbb{P}_{Z}^{(i)}$ is hard do-intervention on z_i , $\mathcal{Z} \cup \mathcal{Z}^{(i)}$ has a non-empty interior
- Do intervention constraint: $f_k(x) = z^{\dagger}, \forall x \in \mathcal{X}^{(i)}$

Theorem (Informal): If Assumption 1 and 2 hold, then the solution to the reconstruction identity with h is a polynomial and do intervention constraint satisfies $\hat{z}_k = ez_i + b, \ \forall z \in \mathscr{Z} \cup \mathscr{Z}^{(i)}$

- Assumption 1: g is an injective polynomial
- Assumption 2: $\mathbb{P}_Z^{(i)}$ is hard do-intervention on z_i and multiple such interventions
- Approximate identification of the intervened component

04 Identification under Imperfect Interventions

🔿 Meta Al

Imperfect with IS

Geometric Intuition:

 (\hat{z}_1, \hat{z}_2) is a transformation over (z_1, z_2) such that we do not have identification upto permutation & scaling We loose IS property with such transformations; the only to preserve IS is to have transformations that recover latents unto permutation & scaling

- Assumption 3: For $\mathbb{P}_{Z}^{(i)} \exists \mathcal{S}$ s.t. support of z_{i} is independent of other latents in \mathcal{S}
- IS constraint: For a set \mathscr{S}' support of \hat{z}_k is independent of other latents in \mathscr{S}'

Theorem (Informal): If Assumption 1, 3 hold, then the solution to the reconstruction identity with *h* is a polynomial and support independence constraint achieves block-affine identification

$$\hat{z}_k = a_k^{\mathsf{T}} z + c_k, \, \hat{z}_m = a_m^{\mathsf{T}} z + c_m,$$

 a_k and a_m do not share non-zero components.

 $\forall m \in \mathcal{S}'$

Thank you