Motivation

- Current AI systems are still limited in terms of planning and reasoning
- Humans plan & reason using abstract concepts (e.g. objects & their properties)
- Causal models present a natural framework to represent such abstract concepts latent causal variables and reason about interventions on them
- How to train representation learners that extract causal variables from high dimensional data (e.g., images) with minimal supervision?

Problem Statement

- True latent variables: *Observational distribution*: $z \sim \mathbb{P}_Z$ with support \mathcal{Z} Interventional distribution: $z \sim \mathbb{P}_{z}^{(i)}$ with support $\mathscr{Z}^{(i)}$
- Mixing function: $g: \mathbb{R}^d \to \mathbb{R}^n$, which is injective
- Observations: $x \leftarrow g(z)$ with supports \mathscr{X} , $\mathscr{X}^{(i)}$ in observational and interventional distribution
- Learn an auto encoder: Reconstruction identity: $h \circ f(x) = x, \forall x \in \mathcal{X} \cup \mathcal{X}^{(i)}$ $\hat{z} \triangleq f(x)$
- Affine Identification: $\hat{z} = Az + c$
- Permutation and scaling Identification: $\hat{z} = \Pi \Lambda z + c$

Interventional Causal Representation Learning

Identification under Hard do Interventions

- Assumption 1: g is an injective polynomial, \mathcal{X} has a non-empty interior
- Assumption 2: $\mathbb{P}_Z^{(i)}$ hard do intervention on z_i
- Do intervention constraint: $f_k(x) = z^{\dagger}, \forall x \in \mathcal{X}^{(i)}$

Theorem (Informal): If Assumption 1 and 2 hold, then the solution to the reconstruction identity with h as a polynomial and do intervention constraint satisfies $\hat{z}_k = ez_i + b, \ \forall z \in \mathscr{Z} \cup \mathscr{Z}^{(i)}$

• For general diffeomorphisms, we show approximate component-wise identification under multiple do interventions per component

Independent Support & Imperfect Interventions

Independent Support (IS): $\mathscr{Z}_{12} = \mathscr{Z}_1 \times \mathscr{Z}_2$

Imperfect with IS

Identification under Imperfect Interventions

Theorem (Informal): If Assumption 1 and 3 hold, then the solution to the reconstruction identity with h as a polynomial and support independence constraint achieves block-affine identification

 a_k and a_m do not share non-zero components.

Experiments

# Interv Distbn	Uniform	SCM-Linear	SCM Non-Linear
1	33.2	42.7	34.9
3	72.2	73.9	65.2
5	88.3	83.6	77.2
7	88.1	85.5	81.9
9	87.5	84.8	81.1

• Assumption 3: For $\mathbb{P}_Z^{(i)} \exists \mathcal{S}$, support of z_i is independent of latents in \mathcal{S} • IS constraint: For a set \mathscr{S}' support of \hat{z}_k is independent of latents in \mathscr{S}'


```
\hat{z}_k = a_k^{\mathsf{T}} z + c_k, \, \hat{z}_m = a_m^{\mathsf{T}} z + c_m, \, \forall m \in \mathcal{S}'
```


