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Background



Linear Independent Component Analysis

X <« GZ

Theorem [Darmois]:
d d

Define W, = ) ayVi. W, = ) ayV;.
k=1 k=1

It W,, W, are independent, all components of V are mutually
independent, and a,,a,; # 0, then V; is Gaussian.




Linear ICA

X <« GZ

Theorem [Comon]

If at least one component of Z 1s non-Gaussian, then it 1s possible to recover
Z up to permutation and scaling, 1.e., GX = Z = [IAZ, where I is
permutation matrix and A 1s a dlagonal matrix.




Non-identification in Autoencoders

Data generation process: X <« g(Z)

)
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Non-identification in Autoencoders

a(z)

* Identification without assumptions on DGP impossible [Hyvarinen et al.]

 Existing works make assumptions on independence structure of latents



Non-Linear ICA

Auxiliary information (Labels) cause latents (e.g., Handwritten digits)
Z <~ Uy + Ny
X < g(Z)




Non-Linear ICA

Assumption: All components of Z are independent conditional on Y
Theorem [Khemakhem et al.]:

) Number of label classes twice the latent dimension

i) Mean and noise in latent generation satisfies sufficient variability implies

Permutation recovery of the latents



Limitations of existing works

Existing works 1n non-linear ICA can rely on unrealistic assumptions
e Labels do not often cause latents (most human labelled datasets)

¢ Too much auxiliary information needed to recover the latent



Problem Setting



Data Generation: Latents Cause Labels

Latents cause labels (e.g., human labelled datasets)

Multi-task regression
Z, < h(U),Vie {1,-,d}

Y<IZ+N
X < g(Z)




Data Generation: Latents Cause Labels

Latents cause labels (e.g., human labelled datasets)

Multi-task classification
Zl <« hl(Ul)’ VZ E {1,“‘,d}

Y « Bernoulli(o(TZ) )

X « g(Z)




Key ldentification Results



Empirical Risk Minimization

Model:

We® — W: Linear model, ® € # ' : Non-linear
representation

N
ERM: min ) f(Wo d(X), Yi>
WeR™k dei -



Independence Constrained ERM

Independence-constrained ERM:

N
min Z f(Wo D(X.), Yl> s.t. Components of ®(X) are i.i.d.
0.0 =



ERM vs IC-ERM

Representation
network
Linear layer
N
min f(Wo(I)X ’Y)
WeR™k de g, ; (X 1,
ERM
Linear layer
N
min f(Wo(DXi Y)
WeR™k de zzzl (X
®(X) is i.i.d.
Representation
network

IC-ERM



Inverting Latents Using IC-ERM

Assumption: Number of tasks is equal to the dimension of the latent

Theorem [Ahuja et al.]:
If number of tasks is equal to the latent dimension and g_l € A ¢ then

representation learned by

a) IC-ERM identifies true latent up to permutation & scaling
b) ERM identifies true latent up to linear transformation




Other Implications

* Recover the ground-truth latent variable values up to permutations and scaling

* If two neural nets (with same architecture and trained ERM on same

data) output the same logits, then their representations are linearly related

e |f two neural nets (with same architecture and trained with IC-ERM on same
data) output the same logits, then their representations are permutations and

scaling of each other




Relaxing Assumption on Number of Tasks



Inverting Latents For Single Task

Assumption:

) Number of tasks is equal to one
p

i) Exponential distribution that follows log p(Z) = Z az'
i=1

Theorem (Informal) [Ahuja et al.]:

If the latent is from exponential family above and the degree of the

polynomial p is sufficiently large, then the IC-ERM identifies the latents
up to permutation




Proposed Approach



ERM + Linear ICA

e Extract the representation learned by ERM ®(X)

e Process ®(X) using linear ICA

Theorem [Ahuja et al.]:
If number of tasks is equal to the dimension of the latents and g_l € X

then the representation learned by ERM + Linear ICA identifies true latent
up to permutation and scaling




Experiments



Experiments

Data Generation

X < g(Z)

Multi-task regression

Y<IZ+N

Multi-task classification

Y « Bernoulli(o(1Z) )



Experiments

Methods

* ERM
e ERM-PCA

e ERM-ICA

Metrics
* Prediction performance: Rz, Accuracy

* Representation quality: Mean correlation coefficient



Experiments

Multi-task regression
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Figure 3: Comparison of label and latent prediction performance (regression, d = 50).



Experiments

Multi-task classification
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Figure 4: Comparison of label and latent prediction performance (classification, d = 16)



Thank You!



