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Background



Linear Independent Component Analysis 

X ← GZ

Theorem [Darmois]: 


Define  ,  . 


If  are independent, all components of  are mutually 
independent, and , then  is Gaussian.


W1 =
d

∑
k=1

a1kVk W2 =
d

∑
k=1

a2kVk

W1, W2 V
a1ia2i ≠ 0 Vi



Linear ICA

X ← GZ

Theorem [Comon]


If at least one component of  is non-Gaussian, then it is possible to recover 
 up to permutation and scaling, i.e., , where  is 

permutation matrix and  is a diagonal matrix.


Z
Z ĜX = ̂Z = ΠΛZ Π

Λ



Non-identification in Autoencoders

g̃ ∘ g̃−1(x) = x

z

g̃−1 g̃

X ← g(Z)

x ̂x

Data generation process:



Non-identification in Autoencoders

g̃ ∘ a−1 ∘ a ∘ g̃−1(x) = x

a(z)

a ∘ g̃−1 g̃ ∘ a−1

• Identification without assumptions on DGP impossible [Hyvarinen et al.] 


• Existing works make assumptions on independence structure of latents  



Non-Linear ICA

X ← g(Z)

Z1 Z2 Z3 Zd.   .    .      

X

Y

Auxiliary information (Labels) cause latents (e.g., Handwritten digits)
Z ← μY + NY



Non-Linear ICA 

Z1 Z2 Z3 Zd.   .    .      

X

Y

Assumption: All components of  are independent conditional on   
Theorem [Khemakhem et al.]: 


i) Number of label classes twice the latent dimension 


ii) Mean and noise in latent generation satisfies sufficient variability implies            


Permutation recovery of the latents

Z Y



Limitations of existing works

Existing works in non-linear ICA can rely on unrealistic assumptions


• Labels do not often cause latents (most human labelled datasets)


• Too much auxiliary information needed to recover the latent   




Problem Setting



Data Generation: Latents Cause Labels

X ← g(Z)Z1 Z2 Z3 Zd.   .    .      

X

Y

Latents cause labels (e.g., human labelled datasets)

Y ← ΓZ + N

Multi-task regression

Zi ← hi(Ui), ∀i ∈ {1,⋯, d}



Data Generation: Latents Cause Labels

X ← g(Z)Z1 Z2 Z3 Zd.   .    .      

X

Y

Latents cause labels (e.g., human labelled datasets)

Y ← 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂(σ(ΓZ))

Multi-task classification

Zi ← hi(Ui), ∀i ∈ {1,⋯, d}



Key Identification Results



Empirical Risk Minimization 

Model:  

 —   Linear model,  Non-linear 
representation
W ∘ Φ W : Φ ∈ ℋΦ :

ERM:      min
W∈ℝd×k,Φ∈ℋΦ

N

∑
i=1

ℓ(W ∘ Φ(Xi), Yi)



Independence Constrained ERM

    Independence-constrained ERM:      

    min
Θ,Φ

N

∑
i=1

ℓ(W ∘ Φ(Xi), Yi) s.t. Components of Φ(X) are i.i.d.



ERM vs IC-ERM
Representation 

network

Representation 
network

Linear layer

Linear layer

min
W∈ℝd×k,Φ∈ℋΦ

N

∑
i=1

ℓ(W ∘ Φ(Xi), Yi)

min
W∈ℝd×k,Φ∈ℋΦ

N

∑
i=1

ℓ(W ∘ Φ(Xi), Yi)

 is i.i.d.Φ(X )

ERM

IC-ERM



Inverting Latents Using IC-ERM

Assumption:  Number of tasks is equal to the dimension of the latent


   
Theorem [Ahuja et al.]: 

If number of tasks is equal to the latent dimension and  then 

representation learned by 

a) IC-ERM identifies true latent up to permutation & scaling 

b) ERM identifies true latent up to linear transformation


g−1 ∈ ℋΦ



Other Implications

• Recover the ground-truth latent variable values up to permutations and scaling


• If two neural nets (with same architecture and trained ERM on same 

    data) output the same logits, then their representations are linearly related


• If two neural nets (with same architecture and trained with IC-ERM on same 

    data) output the same logits, then their representations are permutations and  

    scaling of each other




Relaxing Assumption on Number of Tasks



Inverting Latents For Single Task

Assumption: 

 

i) Number of tasks is equal to one


ii) Exponential distribution that follows  log p(Z) =
p

∑
i=1

aizi

Theorem (Informal) [Ahuja et al.]: 


If the latent is from exponential family above and the degree of the 

polynomial  is sufficiently large, then the IC-ERM identifies the latents 

up to permutation 

p



Proposed Approach



ERM + Linear ICA 

• Extract the representation learned by ERM   


• Process   using linear ICA

Φ(X)

Φ(X)

Theorem [Ahuja et al.]: 

If number of tasks is equal to the dimension of the latents and  

then the representation learned by ERM + Linear ICA identifies true latent 

up to permutation and scaling 


g−1 ∈ ℋΦ



Experiments



Experiments

X ← g(Z)

Y ← ΓZ + N

Y ← 𝖡𝖾𝗋𝗇𝗈𝗎𝗅𝗅𝗂(σ(ΓZ))

Multi-task regression

Multi-task classification

Data Generation



Experiments

Methods

• ERM


• ERM-PCA


• ERM-ICA

Metrics

• Prediction performance: , Accuracy


• Representation quality: Mean correlation coefficient

R2



Experiments

Multi-task regression



Experiments

Multi-task classification



Thank You!


